

 [image: _images/header.png]

Geppetto is a web based platform to build neuroscience applications that let the user explore, visualize and simulate neuroscience data and models such as a cell or even a whole brain.

A demo application using latest release of Geppetto is available here [https://live.geppetto.org] while the binaries are available to
download here [https://github.com/openworm/org.geppetto/releases/].
The documentation is split into two main sections: a guide to help you learn how to use Geppetto based applications and the developers documentation, to learn how to build applications based on Geppetto and how to contribute to it.

[image: _images/usr_btn.png] [image: _images/dev_btn.png]

If you have any problems you can write in the Slack Geppetto Channel (email info@geppetto.org to get an invitation), we’ll be happy to help you!

Contributions

Geppetto is open source, released under the MIT license.

The following is a list of applications built using Geppetto:

Open Source Brain [http://opensourcebrain.org]

[image: _images/0.jpg]OSB Video [http://www.youtube.com/watch?v=implDpQSSWg]

Virtual Fly Brain [http://virtualflybrain.org]

[image: _images/01.jpg]VFB Video [http://www.youtube.com/watch?v=XkbauvReJFA]

NEURON-UI [https://github.com/MetaCell/NEURON-UI]

[image: _images/02.jpg]NEURON Video [http://www.youtube.com/watch?v=CjoA3lTa25I]

WormSim [http://wormsim.org]

[image: _images/03.jpg]WormSim Video [http://www.youtube.com/watch?v=QaCRNX0hdwU]

Geppetto is currently used and contributed to by the following groups:

	MetaCell [http://metacell.us]

	Wellcome Trust [http://www.wellcome.ac.uk/] via the Open Source
Brain [http://www.opensourcebrain.org/] initiative (Silver Lab,
University College London [http://www.ucl.ac.uk/silverlab/])

	Wellcome Trust [http://www.wellcome.ac.uk/] via Virtual Fly
Brain [http://www.virtualflybrain.org/] (Institute for Adaptive and
Neural Computation, University of
Edinburgh [http://http://www.anc.ed.ac.uk/] , Department of
Genetics, University of Cambridge [http://www.gen.cam.ac.uk/] , MRC
Laboratory of Molecular Biology,
Cambridge [http://www2.mrc-lmb.cam.ac.uk/] , European
Bioinformatics Institute (EMBL-EBI) [http://www.ebi.ac.uk/])

	The Brain Observatory [http://thebrainobservatory.org]

	OpenWorm [http://www.openworm.org/]

	Orion Bionetworks [http://www.orionbionetworks.org/]

The following is a list of the websites currently using a custom
deployment of Geppetto available on the web:

	Open Source Brain [http://opensourcebrain.org]

	Virtual Fly Brain [http://virtualflybrain.org]

	Patient H.M. [http://www.patienthm.org]

	WormSim [http://wormsim.org]

Contact us

You can reach out to us at info@geppetto.org.

Website [http://geppetto.org] | GitHub [http://git.geppetto.org] |
Development Board [http://board.geppetto.org]

Follow us on Twitter [https://twitter.com/GeppettoEngine] and on our
Blog [http://blog.geppetto.org]!

Screenshots

[image: _images/ss1.png]

Screenshot 1 - Visualization of the drosophila fly brain superposing
anatomy and segmented neurons (Model source Virtual Fly
Brain [http://virtualflybrain.org/])

[image: _images/ss2.png]

Screenshot 2 - Simulation using NEURON of a model of the Auditory
Cortex from David Beeman, University of Colorado (Model source Open
Source Brain [http://opensourcebrain.org/])

[image: _images/ss3.png]

Screenshot 3 - Simulation of a single compartment Hodgkin-Huxley
neuronal model in NeuroML [http://neuroml.org/] (Model source Open
Source Brain [http://opensourcebrain.org/])

[image: _images/ss4.png]

Screenshot 4 - Simulation of a network of single compartment neurons
for the C.elegans built by the OpenWorm project.

[image: _images/ss5.png]

Screenshot 5 - Visualisation of a Purkinje cell in
NeuroML [http://neuroml.org/] from Open Source
Brain [http://opensourcebrain.org/projects/purkinjecell]

[image: _images/ss6.png]image

Screenshot 6 - Visualisation of the realistic morphology of a
Ganglion cell reconstructed using EyeWire [https://eyewire.org].

[image: _images/symbol.png]

Index

Geppetto API and Workflows

High level workflow

The Geppetto workflow starts by loading a Geppetto project from the client application. A Geppetto project links to a Geppetto Model. After a project is loaded the model becomes available to the application which in turn can implement specific workflows.

A Geppetto application (former extension) will define a set of custom workflows, e.g. visualize the content of the model, define experiments, control simulations, etc. An application will also define its own user interface reusing any of the Geppetto components or defining custom ones.

Another (old and deprecated) way to define custom behavior is through project scripts, which are custom
Javascript files which are loaded with the project.

The main Geppetto workflow is controlled through messages in the frontend.

Websocket API

A websocket channel is set up at the client bootstrap.
The communication is based on JSON format messages with this general structure:

	requestID

	type

	data: the actual message payload. It is specific for every message.

Inbound messages

geppetto_version

Asks for the current Geppetto version number. This is automatically called during the bootstrap.

Example request:

{"requestID":"0","type":"geppetto_version","data":"null"}

user_privileges

Asks for user privileges. Used when the backend of Geppetto has a persitence module available which provides support for user authentication and privileges.

	notify_user

	get_script

	get_data_source_results

Loading a Geppetto Project and Model

We have different ways to load a project:

	load_project_from_url

	load_project_from_id

	load_project_from_content
[image: _images/load_project_workflow.png]image
Examples:

{"requestID":"Connection1-1","type":"load_project_from_url","data":"https://github.com/OpenSourceBrain/NWBShowcase/raw/master/NWB/time_series_data.nwb"}

{"requestID":"null-1","type":"load_project_from_id","data":"{\"projectId\":\"1\"}"}

save_project_properties

persist_project

make_project_public

download_project

new_experiment

new_experiment_batch

clone_experiment

load_experiment

save_experiment_properties

delete_experiment

get_experiment_state

experiment_status

run_experiment

set_watched_variables

get_watch

clear_watch

set_parameters

set_experiment_view

link_dropbox

unlink_dropbox

get_dropbox_token

upload_model

upload_results

get_supported_outputs

download_model

download_results

fetch_variable

resolve_import_type

resolve_import_value

run_query

run_query_count

Outbound messages

The outbound messages (from the server to the client) can be both in text or gzip format.

geppetto_version

Response to inbound geppetto_version
Example:

{"requestID": "null-0", "type": "geppetto_version", "data": "{\"geppetto_version\": \"0.4.2\"}"}

user_privileges

Defines the current user privileges

{"requestID": null, "type": "user_privileges", "data": "{\"user_privileges\": \"{\\\"userName\\\": \\\"Python User\\\", \\\"loggedIn\\\": true, \\\"hasPersistence\\\": false, \\\"privileges\\\": [\\\"READ_PROJECT\\\", \\\"WRITE_PROJECT\\\", \\\"RUN_EXPERIMENT\\\", \\\"DROPBOX_INTEGRATION\\\", \\\"DOWNLOAD\\\", \\\"ADMIN\\\"]}\"}"}

project_loaded

Returns the loaded project to the frontend

{"requestID": "Connection1-1", "type": "project_loaded", "data": "{\"project_loaded\": \"{\\\"persisted\\\": false, \\\"project\\\": {\\\"id\\\": 0, \\\"name\\\": \\\"NWB file time_series_data.nwb\\\", \\\"geppettoModel\\\": {\\\"id\\\": null, \\\"type\\\": \\\"MODEL\\\"}, \\\"baseUrl\\\": null, \\\"experiments\\\": [], \\\"activeExperimentId\\\": -1, \\\"volatile\\\": true, \\\"view\\\": null, \\\"isPublic\\\": false}, \\\"isReadOnly\\\": true}\"}"}

{"requestID":"null-1","type":"project_loaded","data":"{\"project_loaded\":\"{\\\"persisted\\\":true,\\\"project\\\":{\\\"id\\\":1,\\\"name\\\":\\\"Hodgkin-Huxley Neuron\\\",\\\"experiments\\\":[{\\\"id\\\":1,\\\"aspectConfigurations\\\":[{\\\"id\\\":0,\\\"instance\\\":\\\"hhcell\\\",\\\"watchedVariables\\\":[\\\"hhcell.hhpop[0].v\\\",\\\"hhcell.hhpop[0].bioPhys1.membraneProperties.naChans.na.m.q\\\",\\\"hhcell.hhpop[0].bioPhys1.membraneProperties.naChans.na.h.q\\\",\\\"hhcell.hhpop[0].bioPhys1.membraneProperties.kChans.k.n.q\\\"],\\\"simulatorConfiguration\\\":{\\\"id\\\":1,\\\"simulatorId\\\":\\\"neuronSimulator\\\",\\\"conversionServiceId\\\":\\\"lemsConversion\\\",\\\"timestep\\\":5.0E-5,\\\"length\\\":0.3,\\\"parameters\\\":{...}}}\\\"}},\\\"isReadOnly\\\":true}\"}"}

geppetto_model_loaded

It is sent when the model is loaded and contains the serialized model
Example:

{"requestID": "Connection1-1", "type": "geppetto_model_loaded", "data": "{SERIALIZED MODEL}"}

client_id

Returns the client is assigned from the backend at bootstrap

{"type":"client_id","data":"{\"clientID\":\"Connection660\"}"}

load_project

import_type_resolved

Returns the whole serialized model after a type is imported.
Example:

{"requestID": "Connection1-1", "type": "import_type_resolved", "data": "{SERIALIZED MODEL}"}

import_value_resolved

Returns the whole serialized model after a value is imported.
Example:

{"requestID": "Connection1-1", "type": "import_value_resolved", "data": "{SERIALIZED MODEL}"}

read_url_parameters

error_loading_project

server_unavailable

server_available

experiment_running

info_message

simulation_configuration

generic_error

error_running_experiment

error_loading_simulation_config

error_reading_script

error_setting_watched_variables

error_downloading_model

error_downloading_results

geppetto_version

script_fetched

data_source_results_fetched

get_scripts

watched_variables_set

clear_watch

fire_sim_scripts

simulation_over

get_supported_outputs

download_model

set_parameters

no_feature

experiment_loading

experiment_loaded

experiment_status

experiment_deleted

get_experiment_state

project_persisted

download_project

project_props_saved

project_made_public

experiment_props_saved

dropbox_linked

dropbox_unlinked

get_dropbox_token

results_uploaded

model_uploaded

download_results

update_model_tree

experiment_created

experiment_cloned

experiment_batch_created

variable_fetched

return_query

return_query_count

return_query_results

Frontend messaging

Geppetto defines a series of event messages which are used

Handle a Geppetto event

GEPPETTO.on(eventName, callback)

Example:

GEPPETTO.on(GEPPETTO.Events.Model_loaded, (model) => {
 app.setState({ model: Model }); // triggers the component to reload
});

Trigger an event

Usually events are triggered by Geppetto core components.
Some events are meant to also be triggered during custom workflows.

GEPPETTO.trigger(eventName[, eventData]);

For example, this shows the spinner with a custom message:

GEPPETTO.trigger(GEPPETTO.Events.Show_spinner, "Initialising components");

Event messages

GEPPETTO.Events global defines the system “standard” events.
In a custom application other events can be defined to handle the custom workflow.

Project workflow messages

	Project_persisted: project:persisted

	Project_loading: project:loading

	Project_loaded: project:loaded

	Project_downloaded: project:downloaded

	Project_properties_saved : project_properties_saved

	Project_made_public: project_made_public

Model and instances

	Model_loaded: model:loaded

	Instance_deleted: instance:deleted

	Instances_created: instances:created

Experiment workflow events

	Select: experiment:selection_changed

	Experiment_loaded: experiment:loaded

	ModelTree_populated: experiment:modeltreepopulated

	SimulationTree_populated: experiment:simulationtreepopulated

	Do_experiment_play: experiment:doPlay

	Experiment_play: experiment:play

	Experiment_status_check: experiment:status_check

	Experiment_pause: experiment:pause

	Experiment_resume: experiment:resume

	Experiment_running: experiment:running

	Experiment_stop: experiment:stop

	Experiment_completed: experiment:completed

	Experiment_failed: experiment:failed

	Experiment_update: experiment:update

	Experiment_updated: experiment:updated

	Experiment_renamed: experiment:renamed

	Experiment_deleted: experiment_deleted

	Experiment_active: experiment_active

	Experiment_created: experiment:created

	Experiment_over: experiment:over

	Experiment_properties_saved : experiment_properties_saved

	Visibility_changed: experiment:visibility_changed

UI events

	Focus_changed: experiment:focus_changed

Widget specific events

Spotlight

	Spotlight_closed: spotlight:closed

	Spotlight_loaded: spotlight:loaded

Tutorial

	Show_Tutorial: show_tutorial

	Hide_Tutorial: hide_tutorial

Spinner

	Show_spinner: spinner:show

	Hide_spinner: spinner:hide

Control panel

	Control_panel_open: control_panel:open

	Control_panel_close: control_panel:close

Canvas

	Canvas_initialised: canvas:initialised

Command

	Command_log : command:log

	Command_log_debug : command:log_debug

	Command_log_run : command:log_run

	Command_clear : command:clear

	Command_toggle_implicit : command:toggle_implicit

Communication with backend events

	Receive_Python_Message: receive_python_message

	Websocket_disconnected : websocket_disconnected

Other

	Color_set: color:set

	Lit_entities_changed: lit_entities_changed

	Component_destroyed: component_destroyed

	Parameters_set : parameters_set

Button Bar Widget

This widget allows the user to define a custom button bar. Each button
has customizable label, icon, tooltip, and can fire any sequence of
Geppetto commands when pressed. Buttons can also grouped in button
groups.

Button bars can either be read from external json files, or defined
explicitly from the console through javascript objects.

Reading a Button Bar defined in an external configuration json file

In order to load an externally defined button bar (i. e. defined in a
self-contained remote file), run the following command:

G.addWidget(Widgets.BUTTONBAR).fromJSON('http://path.to/file')

Configuration file syntax

Here is an example of a button bar definition in json:

{
 "Sample ButtonBar": {
 "buttonGroupOne": {
 "buttonOne": {
 "actions": [
 "GEPPETTO.Console.log('button1.action1')",
 "GEPPETTO.Console.log('button1.action2')"
],
 "icon": "gpt-osb",
 "label": "1",
 "tooltip": "This is a button"
 },
 "buttonTwo": {
 "actions": [
 "GEPPETTO.Console.log('button2.action1')"
],
 "icon": "gpt-pyramidal-cell",
 "label": "2",
 "tooltip": "This is another button"
 },
 "buttonThree": {
 "actions": [
 "G.addWidget(1).setMessage('hello from button 3')"
],
 "icon": "gpt-ion-channel",
 "label": "3",
 "tooltip": "Yet another"
 }
 },
 "buttonGroupTwo": {
 "buttonFour": {
 "actions": [
 "G.addWidget(1).setMessage('hello from button 4')"
],
 "icon": "gpt-make-group",
 "label": "four",
 "tooltip": "And yet another..."
 },
 "buttonFive": {
 "actions": [
 "G.addWidget(1).setMessage('hello from The Worm')"
],
 "icon": "gpt-worm",
 "label": "five",
 "tooltip": "OK, I'll stop now!"
 }
 }
 }
}

This configuration file gives rise to the following button bar:

The syntax of the configuration file is meant to be intuitive:

	1st level : the name of the toolbar (only one)

	2nd level : button group definitions (any number)

	3rd level : button definition (any number)

Each button has the following attributes:

	label: text displayed inside the actual button

	icon: icon displayed alongside the label. See the Geppetto
Icons [https://github.com/borismarin/org.geppetto.frontend.icons]
project for icon names (Fontawesome should also work).

	action: a list of Geppetto commands to be executed sequentially,
exactly as they would have been typed in the console.

	tooltip: text displayed when the mouse is hovered over the button.

How Do I create My Own Geppetto Application?

Creating your own Geppetto application is very simple, as simple as cloning geppetto-application [https://github.com/openworm/geppetto-application] repository (to use it as a template) and then modifying ./components/Application.js with your custom code. You might want to create a GitHub repository to contain your files and then replace the content of the folder org.geppetto.frontend/scr/main/webapp with the content of your repository. The default Geppetto application repository contains also other files that might be of interest:

	The .eslintrc.js file will allow you to configure linting rules on top of the default rules we are already enforcing for the default Geppetto applications. Check the default linting rules we are inheriting from geppetto-client repository here [https://github.com/openworm/geppetto-client/blob/development/.eslintrc.js].

	In GeppettoConfiguration.json file you will have to specify how are you planning to use the Geppetto application. Is it going to be embedded in an iframe? are you planning to use a context path? Would you like to use a different color scheme for built-in Geppetto components?

	The package.json file is installing NPM geppetto-client package (which contains all the different npm packages required for the default Geppetto application to work). But you can include extra npm packages there that you are planning to use in your custom Geppetto application.

	Finally webpack.config.js controls the way your custom Geppetto application will be build.

Coming back to the main file (./components/Application.js), you can define there your own js functions as needed and interact with the Geppetto API to add components that Geppetto makes available. For example, the following code adds the 3D canvas component to the background element with id=”sim” (a commonly used component conveniently provided by Geppetto):

//Canvas initialization
<div id="sim">
 <Canvas
 id="CanvasContainer"
 name={"Canvas"}
 ref="canvasRef"
 />
</div>

Or as another example, the code below is injecting a logo component to the element with id=”geppettologo” (again, conveniently provided by Geppetto; it appears in the top right) and then injecting a Link button component, that links to the source code on GitHub, while also specifying a position for this element:

<Logo
 logo='gpt-gpt_logo'
 id="geppettologo"
/>

<div id="github-logo">
 <LinkButton
 left={41}
 top={390}
 icon='fa fa-github'
 url='https://github.com/openworm/org.geppetto'
 />
</div>

NOTE: Since Geppetto exposes a dependency to react.js [https://reactjs.org/] (much of its internals use this framework), we highly encourage you to write your custom code as React components. But nothing will stop you from adding DOM elements with jQuery (or vanilla js). If a DOM element is not specified, the component will be added in a floating window (also known as a “Geppetto widget”).

Geppetto Application Examples

You can achieve virtually any look & feel with a Geppetto application. We provide below some examples of UIs built as Geppetto applications (code also linked if available as open source software):

geppetto-default [https://github.com/openworm/geppetto-application.git]: the default Geppetto application we know and love, available on live.geppetto.org [https://live.geppetto.org/].
[image: _images/default.png]Geppetto default application

geppetto-osb [https://github.com/OpenSourceBrain/geppetto-osb/tree/development]: Geppetto application for Open Source Brain [http://www.opensourcebrain.org/], a repository of open source computational neuroscience models that features a Geppetto based 3D viewer of morphologies and simulation environment.
[image: _images/osb.png]Geppetto OSB application

geppetto-vfb [https://github.com/VirtualFlyBrain/geppetto-vfb/tree/development]: Geppetto application for Virtual Fly Brain [https://v2a.virtualflybrain.org/], a reference for drosopohila neuroanatomy and ontology.
[image: _images/vfb.png]Geppetto VFB application

geppetto-hm: Patienthm.org [http://patienthm.org/], portal and atlas of all Patient HM [https://en.wikipedia.org/wiki/Henry_Molaison] imaging data entirely built as a Geppetto application.
[image: _images/hm1.png]Geppetto HM application - MRI
[image: _images/hm2.png]Geppetto HM application - Big image viewer

geppetto-netpyne [https://github.com/MetaCell/NetPyNE-UI]: Geppetto application for NetPyNE [http://www.netpyne.org/], a python package to facilitate the development, parallel simulation and analysis of biological neuronal networks using the NEURON simulator.
[image: _images/netpyne.png]Geppetto NetPyNE application

How to deploy a Geppetto application in my Eclipse environment

In this section we will show you how to deploy a custom Geppetto application to your local Geppetto environment. The below assumes that you already have your Geppetto and Eclipse environment configured locally. If that is not the case, see the following pages:

	Source Setup on OSX and Linux [http://docs.geppetto.org/en/latest/osxlinuxsetup.html] or Source Setup on Windows [http://docs.geppetto.org/en/latest/windowssetup.html]

	Instructions for setting up Geppetto on Eclipse Neon [http://docs.geppetto.org/en/latest/eclipsesetup.html]

First of all, starting from our home folder we begin by cloning the custom Geppetto application repository into the Geppetto Frontend’s webapp folder, located in the geppetto-sources folder.

cd geppetto-sources
cd org.geppetto.frontend/src/main
git clone https://github.com/MyGitHubUser/geppetto-custom-application webapp

Once done we will need to update our org.geppetto.frontend project to take into account the changes made. We can start by right clicking on the bundle org.geppetto.frontend->Maven->Update Project. Then, we right click again on org.geppetto.frontend->Run As->Maven Install. This will re-build our bundle and npm will automatically redeploy the frontend to the Virgo server’s folder so that we can use the new application.
Once the server finishes starting all the bundles, we can open the Geppetto frontend homepage [http://localhost:8080/org.geppetto.frontend/] with our browser and see our loaded application working.

Geppetto Build

	Geppetto Configuration

	Maven Profiles

	Development Build

	Production Build

Geppetto Configuration

Geppetto lets you configure your deployment with a set of parameters
that are defined in
org.geppetto.frontend/src/main/webapp/GeppettoConfiguration.json. This
file exposes the following parameters:

	contextPath: The context path is the prefix of the URL path to
access Geppetto. Typically contextPath is
“org.geppetto.frontend” for development and “/” for production. Assuming a local
development environment with contextPath “org.geppetto.frontend”,
you will access Geppetto at localhost:
localhost:8080/org.geppetto.frontend

	useSsl: If true, Geppetto will be configured to use https instead of http.

	embedded: Geppetto is configured to work as an embedded instance
inside an iframe. This means CORS will be enabled, a postMessage
channel will be available for the main frame, some layout and href
calls customization, etc.

	embbedderURL: If running in embedded mode, this specifies the URL of
the main frame container. For security reasons Geppetto will only
accept cross-origin calls from this URL.

	noTest: If true, tests are suppressed during the build process. If
false, tests will be run as part of the build process.

	themes: Defines a Geppetto “theme”. So far, we only expose a few
parameters defining colours. Below you can find a list of the
parameters exposed that can be overridden by your custom theme file:

@primary_color: #fc6320;
@secondary_color: #fc401a;
@background_color_body_0: #141a1e;
@background_color_body_50: #5c6268;
@background_color_body_73: #60666d;
@background_color_body_100: #515359;
@background_color_widget: rgb(66, 59, 59);

In order to implement a new theme, a less file needs to be created
defining some or all these parameters and the theme needs to be
specified in the themes and set to true.

This is how the default (and recommended for development environments)
GeppettoConfiguration.json looks:

{
 "_README" : "http://docs.geppetto.org/en/latest/build.html",
 "contextPath": "org.geppetto.frontend",
 "useSsl": false,
 "embedded": false,
 "embedderURL": ["/"],
 "rootRedirect":"",
 "noTest": false,
 "themes": "css/colors",
 "properties": {
 "title" : "geppetto",
 "description": "Geppetto is an open-source platform to build web-based tools to visualize and simulate neuroscience data and models. This is a live deployment to showcase its functionalities.",
 "type": "website",
 "url": "http://live.geppetto.org",
 "icon" :"geppetto/style/favicon.png",
 "image": "http://www.geppetto.org/images/logo.png"
 }
}

Maven Profiles

The Java based backend of Geppetto is built using Maven, with the “mvn -Dhttps.protocols=TLSv1.2 install” command. Maven
allows for different build steps to be specified for different
environments, and Geppetto provides a development and a production
profile (see below for how to trigger different builds). Builds can be
triggered at the root from the org.geppetto bundle and parameters will
be propagated to the children (child bundles are defined in
org.geppetto/pom.xml). Maven builds can also be triggered for individual
bundles from the specific bundle root that needs to be built.

Building for development

Clone geppetto-client inside geppetto-application, then change package.json in geppetto-application as follow

// package.json
"devDependencies": {
 "@geppettoengine/geppetto-client": "file:./geppetto-client"
 },

Then run mvn -Dhttps.protocols=TLSv1.2 install

When the command “mvn -Dhttps.protocols=TLSv1.2 install” is executed, none of the optimization
tasks are run. When doing development, it is not necessary to run the
production build unless you wish to simulate a production environment.

NOTE: remember to restore geppetto-client to the right version before pushing your changes.

Building for production

mvn -Dhttps.protocols=TLSv1.2 install -P master

Some optimization tasks are applied to the org.geppetto.frontend bundle
to optimise performance and security. To see the difference between
profiles have a look at
org.geppetto.frontend/src/main/webapp/package.json.

Overriding Geppetto Parameters with mvn

Geppetto configuration settings can be overwritten by passing the
parameters to the “mvn -Dhttps.protocols=TLSv1.2 install” command. An example follows:

mvn -Dhttps.protocols=TLSv1.2 install "-DcontextPath=theearth" "-DuseSsl=true" "-Dembedded=true" "-DembedderURL=universe,milkyway"

NOTES

At this point when you run:

npm run build,

in Geppetto application to generate the bundle files, we are also bundling files from geppetto-client package. In the future, we will completely decouple gepetto-client from geppetto-application so that geppetto-client can be seen as a truly independent and ready to use npm package.

Running CasperJS Tests

Prereqs

	node.js

	npm

Install with:

npm install -g phantomjs casperjs slimerjs

Run with (in this folder):

To test that Casper is properly installed:

casperjs test LiveTests.js --engine=slimerjs

To run Core projects Tests (Requires NOT having the persistence bundle):

casperjs test --includes=CoreTestsUtility.js CoreTests.js --engine=slimerjs

To run Persistence Tests (Requires the persistence bundle and a running MySQL server):

casperjs test PersistenceTests.js --engine=slimerjs

If the tests were executed successfully and passed, you’ll get something like this in your console.

[image: _images/CoreTests.png]image:

Settings and Errors

Tests are executed by default on port 8080. If you would like to execute tests on a different port, you can change it here [https://github.com/openworm/org.geppetto.frontend/blob/development/src/main/webapp/js/pages/tests/casperjs/CoreTestsUtility.js#L1].

If you have an error similar to this one:
Gecko error: it seems /usr/bin/firefox is not compatible with SlimerJS.
It may be due to a new version of Firefox not supported by your current Slimer version. You have two options:

	Update Slimerjs and check if it supports latest FireFox

	Change application.ini maximum Firefox version parameter. Reference [https://github.com/laurentj/slimerjs/issues/495#issuecomment-225008001]

Adding New Tests

New Tests can be added to the Persistence or CoreTests files found here [https://github.com/openworm/org.geppetto.frontend/blob/development/src/main/webapp/js/pages/tests/casperjs#L1].

The Persistence tests can only be executed with the persistence bundle on. These tests make sure that
the functionality for persisting projects/experiments works.

The Core tests don’t need the persistence bundle. These tests are for general Geppetto functionality including:
UI performance, widgets, React components, camera controls and default Geppetto projects.

New tests must be encapsulated in casper functions like this:

casper.then(function(){
	//test code
});

Only casper function calls can be made from here. To learn more about the tests calls that can be made
from here check out the CasperJS Test API documentation [http://docs.casperjs.org/en/latest/modules/tester.html]

Calls to Geppetto code or JQuery must be encapsulated inside a casper evaluate function:

casper.then(function(){
	var value = casper.evaluate(function() {
		//Geppetto Code or JQuery
	});
	//test code
});

The evaluate function returns a value, which can be used later for testing.
Example:

casper.then(function(){
	var expectedVisibility = true;
	var visibility = casper.evaluate(function() {
		return Canvas1.engine.getRealMeshesForInstancePath(variableName)[0].visible;
	}, variableName);
	test.assertEquals(visibility,expectedVisibility,"Visibility correct");
});

In here we are testing the visibility of a 3D Mesh inside Geppetto. The call to Geppetto objects and
functions is done inside the evaluate method, which returns a boolean with the visibility of the mesh.
The return value is then used to test against the expected state.

documentation

	CasperJS Test API documentation [http://docs.casperjs.org/en/latest/modules/tester.html] - assert API

	CasperJS Core API documentation [http://docs.casperjs.org/en/latest/modules/casper.html] - actions like clicks.

	Additional command-line options for casperjs [https://docs.slimerjs.org/current/configuration.html#command-line-options] (these can go after --engine=slimerjs)

Geppetto Front End Components

	Overview

	Developing Components

Overview

Geppetto is designed as a platform that provides flexibility for
developers to implement their own UI. A components model is intended to
decouple UI elements from the core Geppetto application, allowing heavy
customization of the front end user experience on a per instance basis.

A componentized model allows Geppetto to load components from a remote
repository during the build phase, allowing customization without
forking the project. Components are written as Bower [http://bower.io]
packages, and loaded as require.js [http://http://requirejs.org]
modules. Familiarity with Bower and Require.js is recommended for
developing components.

Components live in the /js/components directory. The default contents of
this directory are:

/js /components /dev /dist components.js install_components.py publish_components.py bower.json

dev/

The dev/ directory contains components under active development. These
components exist in the main Geppetto frontend repository, and are
loaded by default.

dist/

The dist/ directory is the location for components installed by bower in
a production environment.

bower.json

bower.json : :

{
 "name": "org.geppetto.frontend.components",
 "version": "1.0.0",
 "ignore": [
 ".jshintrc",
 "**/*.txt"
],
 "dependencies": {
 "simulationcontrols": "https://github.com/mlolson/geppetto-components/raw/master/simulationcontrols.zip",
 "cameracontrols": "https://github.com/mlolson/geppetto-components/raw/master/cameracontrols.zip",
 "help": "https://github.com/mlolson/geppetto-components/raw/master/help.zip",
 "tutorial": "https://github.com/mlolson/geppetto-components/raw/master/tutorial.zip",
 "bootstrap": "https://github.com/mlolson/geppetto-components/raw/master/bootstrap.zip"
 }
}

The dependencies field specifies the components to be installed from
remote repositories. When the command bower install is run, the
specified packages will be downloaded and installed into the /dist
directory. If Bower sees the components already in the dist folder, it
will not attempt to overwrite them.

components.js

The components.js file specifies which components to load at runtime via
require.js. For example, here we load three components from the dev
directory, in this case using the JSX parser: :

define(function(require) {
 require('jsx!./dev/simulationcontrols/SimulationControls');
 require('jsx!./dev/cameracontrols/CameraControls');
 require('jsx!./dev/tutorial/IntroModal');
});

install_components.py

The install_components script runs the command bower install, then
generates the components.js file to load components from the
dist/ directory. The install_components script is meant to be run
on the server, not in a development environment.

publish_components.py

Usage: ./publish_components -v <version>

The publish components script attempts to publish the contents of the
dev directory to a local git repository called org.geppetto.bower.
This folder is created at the source root (parrellel to
org.geppetto.frontend). Each component directory is zipped and copied to
org.geppetto.bower/<version>/<component>.zip. The origin of
this repository on github is at
https://github.com/openworm/org.geppetto.bower.

Developing Components

A component is simply a Bower package. It contains a Bower configuration
file (bower.json), which tells bower how it should be installed.
Information on creating Bower packages can be found
here [http://bower.io/docs/creating-packages/]. A component directory
might look something like this:

/cameracontrols CameraControls.js bower.json

bower.json: :

{
 "name": "cameracontrols",
 "main": "CameraControls",
 "version": "0.0.1",
 "authors": [
 "Matt Olson <mattlolson@gmail.com>"
],
 "description": "camera controls for geppetto",
 "moduleType": [
 "amd"
],
 "license": "MIT",
 "private": true,
 "ignore": [
 "**/.*",
 "node_modules",
 "bower_components",
 ".",
 "test",
 "tests"
]
 }

In order to install Geppetto components correctly, we add one additional
field, main. It is not part of the Bower spec. main tells
Geppetto which file is the entry point to the package. In this case the
line:

require('jsx!./dev/cameracontrols/CameraControls');

will be added to components.js when the install script is run. The
file CameraControls.js will then be loaded when the app is started.

The components can be hosted on any public server. Github is convenient.
Zip the directory and upload it to a location of your choice. When you
are ready to use it, add the entry to the dependencies field of
bower.json and run the install_components script.

Geppetto Concepts

Project

The entry point for a Geppetto application is the Geppetto Project.
Each Geppetto Project holds a reference to a single Geppetto Model and in
addition stores the current state of the application (e.g. which components
are open along with their content and position). Every Geppetto application
can make use of one or multiple Geppetto Projects.

Every Geppetto Project holds:

	A model. Every project has a reference model

	A set of experiments

	A custom load script (deprecated)

In addition, a project can be:

	volatile: a volatile project cannot be stored

	public: a public project can be accessed by every user

Experiment

The Geppetto model defines its own structure and initial values.
A computational experiment in Geppetto defines:

	the parameter values for the simulation of the model (aspect configurations).

	the variables to be recorded for the simulation.

	views configuration

In addition, after the simulation has finished,
the experiment stores the result of the simulation.
The current model values are then a combination of:

	Initial values

	Experiment parameters

	Simulation results

Model

A Geppetto Model is at the core of every Geppetto project.
A model describes a structured entity; one model could describe
an entity as a particle system, while another model could describe its
biophysical properties.
A model defines its structure using types and variables, allows to represent
complex data at different abstraction levels, and has the capability to load only the required parts
when needed (lazy loading). See more here.
The dynamics of the model are defined through experiments/simulation results.

Application and worflows

A basic Geppetto workflow starts by loading a project in the frontend.
After the project is loaded
we can inspect the visual parts of
the model through the widgets defined in the project view.
We can define experiments, run simulations and look at simulation results.

A Geppetto application (former extension) can define a custom
workflow and components on the frontend.

Another (old) way to define custom behavior is through project scripts, which are custom
Javascript files which are loaded with the project.

Simulation

A Simulation is the top level controller of Geppetto. A simulation is
configured through a file which describes what entities and models are
to be simulated.

Simulator

A Simulator is directly responsible to simulate a class of models by
employing one or more solvers. A simulator can be seen as a controller
which drives the solvers to compute one or more simulation steps on the
models it is responsible for.

Conversion - Model Interpreter

A Conversion is in charge of converting a model from one format to
another. This conversion service takes place between the Model
Interpreter (the service which generates a Geppetto Model from a set of
files) and the simulator. This conversion service can be specified by
the user in the simulation file or automatically invoke by Geppetto.
Geppetto will automatically call this service if the output format of
the model interpreter doesn’t match any of the input formats in the
simulation.

Solver

A Solver is the lowest level component of the simulation stack and is in
charge of mathematical computation. Generic solvers (e.g. ODE,PDE,etc.)
can be reused across different simulators while specific one can be
implemented ad-hoc for a specific algorithm (e.g. SPH).

 * Visualizing Connections* An entity can
specify multiple connections, input or output, to other entities and
sub-entities. Geppetto’s ability to connect entities with a specific
orientation allows for any orientend graph to be represented. Extra
custom properties can be found inside the Connections and can be used to
store domain-specific data. Along with these custom properties, a
connection may also contain a list of visual references which are used
to store references to specific parts of entities that could, for
instance, visually represent a connection.

Getting Started

The first step to visualize connections is to load a Simulation that has
connected entities. From our current samples list, the “C302
Experimental Network of integrate and fire neurons” model is a good
model to see connections in action.

Once you have a model loaded, you can click on the entities in the scene
(3D picking) to see any connections associated to the selected entity.
Clicking on an entity will select it; upon selection any connections
to/from other entities will be shown via entity color coding. The
selected entity color will change to yellow. Entities that have output
connections to a selected entity will change to orange while entities
that have input connections to a selected entity will change to a light
pink color. Those entities that have both input and output connections
will become green.

The picture below shows the color coding for the different kinds of
connections:

[image: _images/connection_colors.png]image

For example, consider a loaded simulation that has three entities: One,
Two and Three, where entity One has an input connection to entity Two
and an output connection to entity Three. If entity One is selected, its
color will change to yellow, entity Two will become light pink and
entity Three will turn orange.

Entity selection and connections visualization can also be accomplished
via the console. To visualize connections, select the entity by using
the “select()” command on it. To return the entity to its default color,
use the “unselect()” command. Refer to Console Commands for the rest of
available commands for connections.

By default, input and output connections are shown, but this can be
modified as explained in Changing Selection Options.

Console Commands ———The whole set of commands for Connection are:

-- Connection.getEntityInstancePath()

 -- Connection.getType()
 Gets type of connection

 -- Connection.highlight(mode)
 Highlights the connection

 -- Connection.getChildren()
 Gets all children of this connection

 -- Connection.getCustomNodes()
 Gets all custom nodes for connection

 -- Connection.getVisualObjectReferenceNodes()
 Returns array of visual object reference nodes for this connection

Changing Selection Options ———By default, selecting an entity
shows the connections it has to other entities. This can be changed by
using the command “Simulation.setOnSelectionOptions(options)”, where the
options is an object that specifies different flags.

The options flags that can be given to the
“Simulation.setOnSelectionOptions()” command are:

show_inputs - Display input connections of selected
entityshow_outputs - Display output connections of selected entity
*hide_not_selected - Hides entities not selected

Simulation.setOnSelectionOptions({show_inputs: true, show_outputs: false, hide_not_selected : true});

Highlighting Visual References ================= Connections can specify
visual references. Visual references are a way to associate a connection
to 3D objects in the scene. Usually they are used to provide a visual
representation of a connection in the 3D scene, but this decision is
left to the developer.

Visual references can be explored via console. Once the user navigates
to an entity connection, visual references can be found inside and can
be highlighted individually.

For instance, if the user wanted to highlight a single visual reference
associated to a given connection, this can be achieved by typing the
following in the Geppetto console:

Entity.Connection.VisualReference.highlight(true);

This will highlight, by changing the color to red, the specific part of
the entity that is noted in the visual reference. To undo a highlight of
a visual reference, the user can use the same function, passing the
false flag instead:

Entity.Connection.VisualReference.highlight(false);

If the user wants to highlight all visual references for a connection,
the following command should be entered in the Geppetto console:

Entity.Connection.highlight(true);

Console Commands ———The entire set of commands for visual
references are:

-- VisualObjectReferenceNode.getAspectInstancePath()

-- VisualObjectReferenceNode.getVisualObjectID()

-- VisualObjectReferenceNode.highlight(mode)

Connectivity Widget

The Connectivity Widget provides different ways to visualize connections
between model entities. Data is bound to the widget by invoking the
setData(entity[, options]) method. The way information is displayed is
controlled via the layout field in the options object. Currently,
four layouts are supported:

	‘matrix’ (default): Connectivity Matrix_

	‘force’: Force-directed layout_

	‘hive’: Hive Plot_

	‘chord’: Chord Plot_

Each one of the options is detailed below.

Layout agnostic options

After creating an instance of the Connectivity widget with
G.addWidget(GEPPETTO.Widgets.CONNECTIVITY), data must be bound to it
using the setData() method, which applies to any of the layouts.
Additional options for the same method can be used to control visual
attributes – such as mapping link/node categories onto colours or node
weights onto line widths – in the following manner:

The setData(entity[, options]) method accepts two arguments:

	entity (mandatory): the entity whose connections will be plotted.

	options (optional): an object, containing one or more of the
following keys:

	layout: one of [‘matrix’, ‘hive’, ‘force’, ‘chord’].
Defaults to ‘matrix’.

	library: a Geppetto library, e.g.
GEPPETTO.ModelFactory.geppettoModel.neuroml that supplies a
network type.

	linkType: a function that maps each connection edge (object
of class
ConnectionNode [https://raw.githubusercontent.com/openworm/org.geppetto.frontend/development/src/main/webapp/js/nodes/ConnectionNode.js])
onto any type of value (coercible to string) which
qualitatively identifies the link category. Defaults to
function(link): {return 1} (i.e., all links are of same
‘type’ 1). Applies to matrix, force, hive views.

	linkWeight: a function that maps each connection edge
(object of class
ConnectionNode [https://raw.githubusercontent.com/openworm/org.geppetto.frontend/development/src/main/webapp/js/nodes/ConnectionNode.js])
onto a Floating point number, which represents the
connection weight. Defaults to function(link): {return 1}
(i.e., all links are of same ‘weight’ 1, and will be e.g. be
drawn as lines with the same width in the force view.

	nodeType: a function that maps the connection source node
(object of class
EntityNode [https://raw.githubusercontent.com/openworm/org.geppetto.frontend/development/src/main/webapp/js/nodes/EntityNode.js])
onto any type of value (coercible to string) which
qualitatively identifies the node category. Defaults to
function(node): {return node.getId().split('_')[0]} (i.e.,
nodes are classified according to part of their ‘id’ field
before the first ‘_’ character). Applies to force,
hive views.

	colorMapFunction: a function returning a d3
scaleOrdinal [https://github.com/d3/d3-scale/blob/master/README.md#scaleOrdinal],
called when a Color_set event is raised.

Connectivity Matrix

Draws a square matrix [http://en.wikipedia.org/wiki/Adjacency_matrix],
where each row [column] correspond to a source [target] node.
Therefore, filled squares at i,j denote a directed edge from node i
to node j. The rows/columns can be sorted by node name, number of
incoming connections, and number of outgoing connections. Circles above
each row/column indicate the type of nodes in that row/column. Hover
over to see node or type names, click to select the corresponding cells
in the Geppetto 3D view.

Example 1

Connectivity widget for a cerebellar granule cell layer
model [http://opensourcebrain.org/projects/grancelllayer]. It defaults
to a vanilla matrix if no options are specified:

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(network_GranCellLayer);

[image: _images/matrix1.png]

Example 2

Using the linkType option to colour links (synapses) by
neurotransmitter in a model of the auditory
cortex [http://opensourcebrain.org/projects/acnet2]. The linkType
function leverages the getAllVariablesOfType method, in order to get
NeuroML synaptic properties, which in turn have and id attribute which
indicates the neuromodulator (and the population, which is irrelevant in
this case). The name is finally split at the underscore to get only
AMPA/GABA. :

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(MediumNet,
 {linkType: function(l) {
 var synapseType = GEPPETTO.ModelFactory.getAllVariablesOfType(l.getParent(), GEPPETTO.ModelFactory.geppettoModel.neuroml.synapse)[0];
 if (synapseType != undefined)
 return synapseType.getId();
 else
 return l.getName().split("-")[0];
 }
 });

[image: _images/matrix2.png]

Force-directed layout

Draws circles for each node, connected by lines for each edge. Node /
link colours and line widths can be customized via the nodeType,
linkType, linkWeight mappings respectively. Nodes repel each other
(force
directed [http://en.wikipedia.org/wiki/Force-directed_graph_drawing]) in
order to reduce clutter, and can be interactively dragged. Hover over to
see the node name.

Example 1

Default force layout for the cerebellar granule cell layer
model [http://opensourcebrain.org/projects/grancelllayer]. :

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(network_GranCellLayer, {layout: 'force'});

[image: _images/force1.png]

Example 2

Using the linkType option to colour links (synapses) by
neurotransmitter and the linkWeight option to scale line widths based
on the synaptic base conductance level (which is NOT physiologically
meaningful, but is used here just for illustrative purposes). :

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(network_GranCellLayer,
 {layout: 'force',
 linkType: function(l) {
 var synapseType = GEPPETTO.ModelFactory.getAllVariablesOfType(l.getParent(), GEPPETTO.ModelFactory.geppettoModel.neuroml.synapse)[0];
 if (synapseType != undefined)
 return synapseType.getId();
 else
 return l.getName().split("-")[0];
 }
 });

[image: _images/force2.png]

Hive Plot

Depicts connectivity using a hive [http://www.hiveplot.net/] plot.
Nodes are segregated by type into axes arranged radially, and edges are
represented by lines. The position of a node in each of the axis is
given by the node degree (indegree + outdegree for directed graphs,
which is always the case in Geppetto).

Example 1

Hive plot for the cerebellar granule cell layer
model [http://opensourcebrain.org/projects/grancelllayer]. Link colours
are customized via the linkType mapping. :

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(network_GranCellLayer,
 {layout: 'hive',
 linkType: function(l) {
 var synapseType = GEPPETTO.ModelFactory.getAllVariablesOfType(l.getParent(), GEPPETTO.ModelFactory.geppettoModel.neuroml.synapse)[0];
 if (synapseType != undefined)
 return synapseType.getId();
 else
 return l.getName().split("-")[0];
 }
 });

[image: _images/hive.png]

Chord Plot

Draws populations as arcs of a circle, with connections represented as
“chords” between populations. The arcs at the extremities of each chord
indicate the number of nodes in each population projecting to the
reciprocal population. Based (but using different conventions) on
Circos [http://circos.ca/intro/tabular_visualization/].

Example 1

Default chord layout for the auditory cortex
model [http://opensourcebrain.org/projects/acnet2]. :

G.addWidget(GEPPETTO.Widgets.CONNECTIVITY).setData(MediumNet, {layout: 'chord'})

[image: _images/chord.png]

Contribute

	Before reporting a bug

	Where to report a bug

	How to report a bug

	How to contribute code to Geppetto

	Geppetto contribution guidelines

	Geppetto code of conduct

Before reporting a bug

	Search issue tracker for similar issues.

	If you are running a local install check against deployed
version to know if it’s a local problem.

Where to report a bug

	A Geppetto bug should be reported on
org.geppetto [https://github.com/openworm/org.geppetto/] if the
root cause is unknown.

	If the root cause is known the issue can be reported on the specific
Geppetto repository, i.e.
org.geppetto.frontend [https://github.com/openworm/org.geppetto.frontend].

	A list of all the sub repositories can be found
here [https://github.com/openworm/org.geppetto/blob/master/README].

How to report a bug

	Specify the version number of Geppetto where the bug occurred (the
version number is written at the top of the console)

	Specify your browser version, operating system, and graphics card.
(for example, Chrome 23.0.1271.95, Windows 7, Nvidia Quadro 2000M)

	Describe the problem in detail. Explain what happened, and what you
expected would happen.

	If applicable provide a small test-case in the form of console
commands that lead to the issue. To get the list of the commands
that have been issued to Geppetto type in the console at any
time G.copyHistoryToClipboard()

	If helpful, include a screenshot. Annotate the screenshot
for clarity.

How to contribute code to Geppetto

	Make sure you have a GitHub account.

	Fork the repository you want to contribute to on GitHub.

	Make changes to your clone of the repository.

	Ensure Geppetto contribution guidelines below are respected.

	Submit a pull request.

Geppetto contribution guidelines

	Always make your contributions for the latest development branch,
not master.

	Create separate branches per patch or feature.

	Once done with a patch / feature do not add more commits to a
feature branch (pull requests are not repository state snapshots,
any change you do in that branch will be included in the
pull request).

	Before opening a pull request:

	If you are adding functionality to the backend of Geppetto add
JUnit tests to cover the functionality.

	If you are adding functionality to the frontend of Geppetto add
Casper test coverage.

	If you are adding functionality for which integration testing is
relevant add QUnit tests to cover the whole stack.

	Run CoreTests.js and UITests.js Casper Tests, make sure they all
pass, attach screenshot to pull request

	Make sure all pre-exisitng JUnit tests and QUnit tests (you can
run them at /GeppettoTests.html, e.g.
live.geppetto.org/GeppettoTests.html [http://live.geppetto.org/GeppettoTests.html])
are still passing after your changes.

	Perform a UI smoke test checking that the samples in the
frontend still work.

	If you add a new feature it’s good to add also an example (both for
showing how it’s used and for testing it still works after
eventual refactorings).

	If you modify existing code (refactoring / optimization / bug fix),
run relevant examples to check they didn’t break or that there
wasn’t some performance regress.

	If some GitHub
issue [https://github.com/openworm/org.geppetto/issues] is relevant
to patch / feature, it’s good to mention issue number with
hash (e.g. #41) in a commit message to get cross-reference in
GitHub web interface.

	Format whitespace consistently with the rest of code base (For
Eclipse users you can use
this [https://github.com/openworm/org.geppetto/blob/master/eclipse/GeppettoFormatter.xml]
format template).

	If you create new files add
License [https://github.com/openworm/org.geppetto/blob/master/LICENSE]
at the top.

Special thanks to @mrdoob for being of inspiration for this process.

Geppetto Code of conduct

All contributors of Geppetto are required to agree with the following code of conduct. Project leads will enforce this code at all times.

The Deed (aka the short version)

The Geppetto is dedicated to providing a harassment- free experience for everyone regardless of gender, gender identity and expression, sexual orientation, disability, physical appearance, body size, race, age or religion. We do not tolerate harassment of contributors in any form. Advertisement is not appropriate for any Geppetto channel, including Slack. Sexual language and imagery is not appropriate for any Geppetto channel, including Slack. Conference participants violating these rules may be sanctioned or expelled from the Geppetto at the discretion of the Community Organizers. Additionally, Geppetto reserves the right to deny access to community spaces such as forums, channels or any other Geppetto related venue for conversation at any time and for any reason in its sole discretion.

More Detail - Full Policy*

Harassment includes verbal comments that reinforce social structures of domination related to gender, gender identity and expression, sexual orientation, disability, physical appearance, body size, race, age, religion; sexual images in public spaces; deliberate intimidation; stalking; following; harassing photography or recording; sustained disruption of meetings or other events; inappropriate physical contact; and unwelcome sexual attention. Contributors asked to stop any harassing behavior are expected to comply immediately.

Expected Behavior

The following behaviors are expected and requested of all community members:

	Participate in an authentic and active way. In doing so, you contribute to the health and longevity of this community.

	Exercise consideration and respect in your speech and actions.

	Attempt collaboration before conflict.

	Refrain from demeaning, discriminatory, or harassing behavior and speech.

	Be mindful of your surroundings and of your fellow participants. Alert community leaders if you notice a dangerous situation, someone in distress, or violations of this Code of Conduct, even if they seem inconsequential.

	Remember that community spaces (Slack, mailing lists, etc.) are shared with members of the public; please be respectful and inclusive at all times

Unacceptable Behavior

The following behaviors are considered harassment and are unacceptable within our community:

	Violence, threats of violence or violent language directed against another person.

	Sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory jokes and language.

	Posting advertising material or soliciting business opportunities.

	Posting or displaying sexually explicit or violent material.

	Posting or threatening to post other people’s personally identifying information (“doxing”).

	Personal insults, particularly those related to gender, sexual orientation, race, religion, or disability.

	Inappropriate photography or recording.

	Inappropriate physical contact. You should have someone’s consent before touching them.

	Unwelcome sexual attention. This includes, sexualized comments or jokes; inappropriate touching, groping, and unwelcomed sexual advances.

	Deliberate intimidation, stalking or following (online or in person).

	Advocating for, or encouraging, any of the above behavior.

	Sustained disruption of community events, including talks and presentations.

Consequences of Unacceptable Behavior

Anyone asked to stop unacceptable behavior is expected to comply immediately.
We expect participants to follow this code of conduct at all conference venues and conference- related social events.

Reporting

If someone makes you or anyone else feel unsafe or unwelcome, please report it as soon as possible. Harassment and other code of conduct violations reduce the value of our event for everyone. We want you to be safe and happy at our event. People like you make our event a better place.

Unacceptable behavior from any community member, including sponsors and those with decision-making authority, will not be tolerated.

If a community member engages in unacceptable behavior, the community organizers may take any action they deem appropriate, up to and including a temporary ban or permanent expulsion from the community without warning and without refund.

You can make a report either personally or anonymously.
Reporting personally can be done directly to conference staff and volunteers.

They can be identified by special badges throughout the conference venue.

Conference staff will help participants contact hotel/venue security or local law enforcement, provide escorts, or otherwise assist those experiencing harassment to feel safe for the duration of the conference. We value your attendance.

Sponsors and exhibitors

Sponsors and exhibitors are also subject to the anti-harassment policy. In particular, exhibitors are asked to not use sexualized images, activities, or other material, and their staff (including volunteers) should not use sexualized clothing/uniforms/costumes, or otherwise create a sexualized environment.

This document draws on:

http://geekfeminism.wikia.com/wiki/Conference_anti-harassment OW-0 http://confcodeofconduct.com/, OW-BY-SA http://citizencodeofconduct.org/ OW-BY-SA

Control Panel Customization

The control panel (CTRL+P or the “rows” button on the left bar to open)
lets users see all visual entities at a glance in tabular form and
offers default actions.

[image: _images/controlpanel.png]image

The control panel can be configured via API to:

	Display custom columns

	Configure which custom controls to show for each row and associate
actions to them

	Set data filters

Display custom columns

Columns can be controlled by setting column metadata, as in the
following example:

var customColumnMeta = [
 {
 "columnName": "path",
 "order": 1,
 "displayName": "Path",
 "source": "$entity$.getPath()"
 },
 {
 "columnName": "name",
 "order": 2,
 "displayName": "Name",
 "source": "$entity$.getPath()"
 },
 {
 "columnName": "type",
 "order": 3,
 "customComponent": GEPPETTO.ArrayComponent,
 "displayName": "Type(s)",
 "source": "$entity$.getTypes().map(function (t) {return t.getPath()})",
 "action": "G.addWidget(3).setData($entity$).setName('$entity$')"
 },
 {
 "columnName": "controls",
 "order": 4,
 "customComponent": GEPPETTO.ControlsComponent,
 "displayName": "Controls",
 "source": "",
 "action": "GEPPETTO.FE.refresh();"
 }
];

GEPPETTO.ControlPanel.setColumnMeta(customColumnMeta);

The non-self-explanatory fields are explained below:

	customComponent: for data that is not simple text, custom components
can be used among those available (list below)

	source: where to get the data, where $entity$ represent the entity
for the given row

	action: columns that use custom components may have configurable
actions, this varies depending on the custom component

Custom components

Here’s a list of available custom components:

	GEPPETTO.ArrayComponent: displays an array as comma separated
clickable items. the action on click comes from the action parameter
in the column metadata.

	GEPPETTO.ControlsComponent: displays custom controls in the form of
buttons based on controls configuration (see next section). The
action here represent a snippet that runs AFTER the action
configured in the control configuration runs (useful to trigger
refresh actions when something changes).

	GEPPETTO.ImageComponent: displays a thumbnail image, with enlarged
preview on hover

Configure custom controls

Custom controls can be configured as follows:

var myControlsConfiguration = {
"VisualCapability": {
 "visibility": {
 "condition": "GEPPETTO.SceneController.isVisible($instances$)",
 "false": {
 "id": "visibility",
 "actions": [
 "GEPPETTO.SceneController.show($instances$);"
],
 "icon": "fa-eye-slash",
 "label": "Hidden",
 "tooltip": "Show"
 },
 "true": {
 "id": "visibility",
 "actions": [
 "GEPPETTO.SceneController.hide($instances$);"
],
 "icon": "fa-eye",
 "label": "Visible",
 "tooltip": "Hide"
 }
 },
 "color": {
 "id": "color",
 "actions": [
 "$instance$.setColor('$param$');"
],
 "icon": "fa-tint",
 "label": "Color",
 "tooltip": "Color"
 },
 "zoom": {
 "id": "zoom",
 "actions": [
 "GEPPETTO.SceneController.zoomTo($instances$)"
],
 "icon": "fa-search-plus",
 "label": "Zoom",
 "tooltip": "Zoom"
 }
},
"Common": {
 "info": {
 "id": "info",
 "actions": [
 "G.addWidget(1).setData($instance$)"
],
 "icon": "fa-info-circle",
 "label": "Info",
 "tooltip": "Info"
 }
}
};

GEPPETTO.ControlPanel.setControlsConfig(myControlsConfiguration);
GEPPETTO.ControlPanel.setControls({"Common": \['info'\],
"VisualCapability": \['visibility', 'zoom'\]});

Controls can be grouped by capabilities. If an entity has a given
capability (VisualCapability in the example above), the controls will be
added. All controls specified under “Common” will be added for all the
rows regardless of capabilities. The setControlsConfig command set the
configuration, while the .setControls command controls which items will
be visible (this can be dynamic).

Set data filter

A filter function can be configured to control what entities gets
displayed in the grid.

The example shown below illustrates how to show in the control panel
only instances of composite types:

var myFilter = function(entities){
 var visualInstances = GEPPETTO.ModelFactory.getAllInstancesWithCapability(GEPPETTO.Resources.VISUAL_CAPABILITY, entities);
 var compositeInstances = [];
 for(var i=0; i<visualInstances.length; i++){
 if(visualInstances[i].getType().getMetaType() == GEPPETTO.Resources.COMPOSITE_TYPE_NODE){
 compositeInstances.push(visualInstances[i]);
 }
 }
 return compositeInstances;
};

GEPPETTO.ControlPanel.setDataFilter(myFilter);

Refreshing the control panel

All the API methods that change the state of the control panel cause the
control panel to re-render so it not necessary to trigger manual
refresh when interacting with the control panel via the API.

However if something has changed in the state of the instances and the
control panel hasn’t been closed and re-opened a manual refresh can be
triggered via script:

GEPPETTO.ControlPanel.refresh();

What Next?

Backlog:

	Share capabilities based configuration with the spotlight

 * Design documents*

This section contains all the Geppetto design documents. The links below
will open a Lucid Chart page where the different documents are
published. Note that there can be multiple tabs in each document as
shown in the screenshot below:

[image: _images/designdocs.png]image

All diagrams are constantly evolving (some more than others) to reflect
the latest structure and drive the development of the new features.

Common

Overview [https://www.lucidchart.com/documents/view/4666b850-512b-5184-8a79-20de0a000fde]

Use
Cases [https://www.lucidchart.com/documents/view/d2b4631c-da56-4b80-9bdb-28c2a6d75c8c]

Backend

Data
Model [https://www.lucidchart.com/documents/view/ae8bd4d6-2226-4aee-9d56-774e323188a6/0]

Services [https://www.lucidchart.com/documents/view/59066315-98d7-488e-b0cb-18f4c2a4cf65]

Simulators [https://www.lucidchart.com/documents/view/425b6548-51de-ecd5-827e-073d0a009bd7]

Simulator pipeline for neuronal
domain [https://www.lucidchart.com/documents/view/441da30d-df65-4001-8809-2a796c80460b]

Runtime Tree
population [https://www.lucidchart.com/documents/view/7c2e3ca2-f11f-4051-b115-a921cf31863b]

WebSockets Backend
API [https://www.lucidchart.com/documents/view/4ba99a20-5217-1f53-82f4-4f420a004d28]

List State
Variables [https://www.lucidchart.com/documents/view/480b4e2c-5237-2970-a88a-249d0a008a0d]

Watch State
Variables [https://www.lucidchart.com/documents/view/4c3283a4-527c-cb68-bb8d-14570a009e11]

Simulation
time [https://www.lucidchart.com/documents/view/412c0624-52f7-032a-a083-22670a00c5f0]

External process from
OSGi [https://www.lucidchart.com/documents/view/bc5b6fe7-0722-4055-b557-e95b9511f85e]

Geppetto API Design Draft
(Old) [https://www.lucidchart.com/documents/edit/48520f68-5227-2452-a0e1-2db80a004e94]

Geppetto Observer
Mode [https://www.lucidchart.com/documents/view/4a8ed5f0-51c4-ccda-9e42-26a20a004538]

Multiple Aspect Integration

Design (in
progress) [https://www.lucidchart.com/documents/view/f66e90ca-9c2d-4f16-9f79-d3f83f5d654a]

Integration Activity Flow (in
progress) [https://www.lucidchart.com/documents/view/4b794838-521e-00a5-98c1-649e0a00c900]

Frontend

Geppetto
Frontend [https://www.lucidchart.com/documents/view/675f119b-3923-4ada-bbfb-ea8d571fd01a]

Events
framework [https://www.lucidchart.com/documents/view/f976cc20-5f29-4c57-9070-e7b97b415521]

Visualization tree and 3D objects
(Refactoring) [https://www.lucidchart.com/documents/view/c860c683-55c7-4864-b28d-9cdf444b5150]

Widgets

Widgets class
diagram [https://www.lucidchart.com/documents/view/43905d5c-5268-ab60-9ff5-2b5d0a00d543]

Widgets high level
design [https://www.lucidchart.com/documents/view/40fbf410-5261-c088-85e0-0a190a005787]

Geppetto Widgets update
mechanism [https://www.lucidchart.com/documents/view/45eb65fc-5293-9670-a570-31530a004b21]

Widget
diagrams [https://www.lucidchart.com/documents/view/4d3c7284-525a-8e5d-ad6b-4d9c0a00c5b3]

Install
Widgets [https://www.lucidchart.com/documents/view/b5e67ca3-cde7-4ad9-9810-edeccc9e1548]

Plotting Widget

Plotting Activity
Diagram [https://www.lucidchart.com/documents/view/4f06a058-5251-8aa8-878e-3a890a0050f4]

Plotting Class
Diagram [https://www.lucidchart.com/documents/view/4959c19c-5251-7c38-8d03-1fb70a0050f4]

Developers documentation

This guide will show you how to build a Geppetto based application and how to contribute to Geppetto.

Why should I use Geppetto?

To put it in one sentence you should use Geppetto to save yourself up to five years of development and skip to building only the code specific to your neuroscience application.

Web applications to visualize neuroscience data and/or simulate computational models come with an intrinsic complexity. Neuroscience data is available in a wide range of formats, whether it represents an MRI, a set of large electromicroscopy images, reconstructed neuron morphologies, a set of electrophysiology traces or a time-varying computational model.

Usually, applications are required to load these different types of data from different repositories. Organizing the data before it can be presented on a unified client is a challenge. Sometimes the data can be accessed from a database, and the application that you are building might be required to perform queries to fetch and lazy load what the user is interested in. If you are working with multimodal data that you need to integrate, then you need to organize the data in a structured, often hierarchical way. You might need to search and query the data from your web application.

If you are dealing with computational models, then you might want to be able to perform operations like instantiating multiple populations of cells and visualizing and simulating them. As you do this, you don’t want to have to redefine each cell that you want to visualize, and you might want to be able to programmatically access each one of them from the web browser with a dedicated API. To simulate your models you might want to have a way of setting different parameters for them as well as parameters specific to your simulator, like the timestep and the duration of your simulation. To transfer all of the data from the backend to the frontend, you will have to solve data compression and streaming for it to be efficient. Once the data is available on your frontend you would have to pick and try out different libraries to visualize it, making them compatible with your data and writing ad-hoc code to interface with each specific third-party API. You would have to do this for each type of data and model.

As you are building your frontend application, you might want to build a control to search your data, a control panel to manage every entity that was loaded, and multiple viewers. You might want to have a way to write tests, that can automatically test the backend and the UI of your application, and have them running with every commit.

All of the above comes for free in Geppetto. It’s a lot of code, and it took us years to engineer, implement and test. Since it is designed to be agnostic to the specific application you have to build, you can rely on Geppetto’s robust infrastructure and instead focus on building the workflows that are specific to your application. You can fully customise the UI to satisfy your needs. You can reuse all the components we have already built and combine them in any way you want. And you can leverage the Geppetto Model to structure your data so that it becomes automatically indexed and programmatically accessible from Javascript.

If you need a persistence layer and user authentication in your application Geppetto offers a persistence bundle that can regulate user authentication and persist user projects using a MySQL database (for more see: How to configure the Persistence bundle)

What formats does Geppetto support?

	BigTIFF [https://www.awaresystems.be/imaging/tiff/bigtiff.html]

	COLLADA [https://www.khronos.org/collada/]

	DICOM [https://www.dicomlibrary.com/dicom/]

	DZI [https://openseadragon.github.io/examples/tilesource-dzi/]

	HTML [https://www.w3.org/html/]

	LEMS [http://lems.github.io/LEMS/]

	NeuroML [https://www.neuroml.org/]

	NIfTI [https://brainder.org/2012/09/23/the-nifti-file-format/]

	NWB [http://www.nwb.org/]

	OBJ [https://en.wikipedia.org/wiki/Wavefront_.obj_file]

	SVS [http://openslide.org/formats/aperio/]

	SWC [http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html]

	Add more

How do I build my own application using Geppetto?

You will need first of all to decide what type of deployment you want to use. Our Java backend allows you to build a client server application that can be deployed on your own server or on the cloud (e.g. Amazon EC2, Cloud Docker, etc.). Alternatively, client server Python based backends are also available (see this template [https://github.com/MetaCell/geppetto-django-template] for Django and this one [https://github.com/MetaCell/geppetto-tornado-flask-template] for Tornado/Flask). pygeppetto [https://github.com/openworm/pygeppetto] lets you create a Geppetto Model from Python. If you work with Jupyter Notebook you also can build Geppetto applications that can run locally on your own Jupyter server. If you use a different stack you will still be able to reuse the Geppetto frontend but you will have to write your own integration code.
To customise the frontend of Geppetto you can write your own extension. An extension will let you create your own pages, organise the pre-existing components or add new ones. Although most of the extensions at present use React, you will also be able to write extensions using other JavaScript frameworks. For more info see here.

What are widgets? What are components?

The user interface of a Geppetto application can be easily customized. As a developer you will be able to choose among a number of pre-existing components or create new ones specific to your own application. The majority of the components in Geppetto are defined using React, although you can use any JavaScript technology you are familiar with. Components can be laid out with any CSS layout you choose. Geppetto offers, out of the box, the ability to wrap any component with a floating dialog if you desire to create a windows based type of user interface. Historically, all components were called widgets and each was wrapped in a dialog, but nowadays the floating layout is optional and we only use ‘widget’ to refer to components which have been wrapped in a dialog. All components are designed to expose a JavaScript API to control the operation specifics to each. Interactions with the UI result in API calls to each component making it possible to script the whole user interface and to write automated tests against it.

What components can I reuse?

	3D Canvas (to display any 3D scene)

	Big image viewer (suitable for tiled EM, virtual slices)

	Configurable controls (buttons, menu buttons, popups, etc.)

	Configurable control panel

	Configurable search

	Gallery with thumbnails

	HTML (to visualize custom HTML)

	Network connectivity

	MRI viewer

	Plot

	Stack viewer (suitable for Z stacks, connects to an IIP3D server)

	Tutorial component (to build custom tutorial for your application)

	Tree viewer (suitable to visualize hierarchies)

	Add yours

What neuronal simulators does Geppetto support?

	NEURON [https://www.neuron.yale.edu/neuron/]

	NetPyNE [http://www.neurosimlab.org/netpyne/index.html]

	jNeuroML [https://github.com/NeuroML/jNeuroML]

	Add yours

What backends does Geppetto support?

JAVA (reference implementation)

	Source Setup on OSX and Linux

	Source Setup on Windows

	Java Docs

Python (in development)

	Jupyter Extension [https://github.com/openworm/org.geppetto.frontend.jupyter]

	Django template [https://github.com/MetaCell/geppetto-django-template]

	Tornado Flask template [https://github.com/MetaCell/geppetto-tornado-flask-template]

[Node.js] (proof of concept)

	Node Backend [https://github.com/openworm/org.geppetto.frontend.nodejs]

What concepts are captured by the Geppetto Model abstraction?

	3D primitives

	Compound types (containers of other types)

	Experiments

	Input Parameters

	Primitive types

	Queries

	Simulation

	Time Series

	State variables

For a in-depth explanation of the Geppetto Model see Explain me the Geppetto Model

IDEs

You can develop a Geppetto application using any IDE of your choosing. Eclipse has plugins that make it easier to integrate with the Virgo server were you to choose a Java based deployment, for instructions see Configuring Geppetto on Eclipse and Having troubles with Eclipse? Tips and tricks. To speed up development we use the Webpack development server which let us hot-deploy any change made to the frontend, including the extensions, in seconds. To start the Webpack development server simply type npm start from the webapp [https://github.com/openworm/org.geppetto.frontend/tree/master/src/main/webapp] folder and then access the frontend at the port 8081.

I don’t understand how * works!

Although we put our best effort to document Geppetto there might be things that we haven’t yet fully explained in writing. If you have a specific question you can either join one of our public bi-weekly development meetings [https://calendar.google.com/event?action=TEMPLATE&tmeid=cjAyc2h0cjEwaGFnbjJvYjYxbmRlbzVjcTBfMjAxNzEyMDVUMTYwMDAwWiBicXZscm02NDJtM2lyamVoYmV0aG9ra2NkZ0Bn&tmsrc=bqvlrm642m3irjehbethokkcdg%40group.calendar.google.com&scp=ALL], ask a question on GitHub [https://github.com/openworm/org.geppetto/issues] or email info@geppetto.org.

Standing on the shoulders of giants

Geppetto uses the following third party libraries:

Backend

	Eclipse Virgo [http://www.eclipse.org/virgo/]

	EMF [https://www.eclipse.org/modeling/emf/]

	EMF2JSON [http://emfjson.org/]

	maven [https://maven.apache.org/]

	OSGi [https://www.osgi.org/]

	pyecore [https://github.com/pyecore/pyecore]

	Shiro [https://shiro.apache.org/]

	Spring [https://spring.io/]

For a full list of our Java dependencies see core pom.xml [https://github.com/openworm/org.geppetto.core/blob/master/pom.xml] and frontend pom.xml [https://github.com/openworm/org.geppetto.frontend/blob/master/src/main/webapp/package.json].

Frontend

	AMI [https://github.com/FNNDSC/ami]

	d3.js [https://d3js.org/]

	jQuery [https://jquery.com/]

	jQuery UI [https://jqueryui.com/]

	lightgallery [http://sachinchoolur.github.io/lightGallery/]

	npm [https://www.npmjs.com/]

	OpenSeadragon [https://openseadragon.github.io/]

	pako.js [https://github.com/nodeca/pako]

	pixi [http://www.pixijs.com/]

	plot.ly.js [https://plot.ly/plotly-js-scientific-d3-charting-library/]

	React [https://reactjs.org/]

	THREE.js [https://threejs.org/]

	webpack [https://webpack.js.org/]

For a full list see our package.json [https://github.com/openworm/org.geppetto.frontend/blob/master/src/main/webapp/package.json].

Index of pages

	Contribution guidelines

	Explain the Geppetto Model to me

	Source Setup on OSX and Linux

	Source Setup on Windows

	Configuring Geppetto on Eclipse

	Having troubles with Eclipse? Tips and tricks

	Configure and build a custom Geppetto deployment

	How to add a new widget (slightly obsolete)

	How to customise the Search component

	How to customise the Control Panel

	How to configure the Persistence bundle

	How to create a Geppetto Recording with Python

	How to run our automated UI tests

	Javadocs Backend documentation

Tips for developer to configure/deploy Eclipse + Virgo

Last Update: July 29th 2017

This section provides tips to solve some problems regarding Geppetto
deploying in a Virgo Server (with Eclipse). These tips summarizes the
experience of some Geppetto developers. Some may work on your
environment and configuration, some don’t. You will have to identify
which one makes sense for you so some software developer skills are
required. Unfortunately, sometimes to configure a Virgo Server with
Geppetto properly requires some knowledge, a lof of common sense and a
little bit of magic. If you have any other tip which can be useful for
someone else, don’t hesitate on adding it to the list.

	Three wise tools.

	mvn clean || Eclipse command: Run as -> mvn clean

	mvn install || Eclipse command: Run as -> mvn install

	mvn update || Eclipse command: Maven -> Update Project

These three comands are the key tools you will be using during the
configuration phase. Usually a mvn install from the org.geppetto
project will be enough but sometimes you have to mvn clean/install
each project independently. If you don’t manage to mvn install all
the projects from org.geppetto root project, try to mvn
clean/install the one that is causing the error. Regarding the third
command, tipically a maven project has a folder structure like this:

main
 java
 resources
test
 java
 resources

However, sometimes this folder structure is “corrupted”. Therefore,
some compilation errors, which make no sense (Eclipse is complaining
about a file although the file is in the right path), are reported.
Execute a Maven Update to the project and then mvn clean/ install.
After executing a mvn update, remember to unclick the Maven Project
Builder (Eclipse command: Right click Project ->
Properties -> Builders -> Unclick Maven Project Builder).
Otherwise it can slow down and, eventually, crash your Eclipse.

	In the Virgo server there are four folders to focus on if you are
having problems:

	pickup: if you are not using any IDE you need to have
a geppetto.map. Otherwise, the file can’t be here.

	serviceability/log/log.log: If you have any problem have a look
at the logs file and try to figure out what is failing

	stage: If you are using an IDE the geppetto bundles will be
deployed here. If you are having some problems and you do not
know what to do, sometimes it is a good option to delete the
content of this folder. It will be regenerated next time the
server is started. However, you may need to delete the Virgo
server from Eclipse and create it again adding all the bundles.
If you are not using Eclipse, this folder shouldn’t have any
bundles and they have to be placed in the repository/usr as .jar
and .war files

	repository/usr: If using an IDE, this folder contains all the
.jar dependencies from the different bundles (a script can be
found in org.geppetto which copies these files into the
Geppetto server). If any library is added or changed, mvn
install the geppetto projects and copy the files again.

	If you have are starting your Virgo Server for the first time and it
is not working try to have a look at the Geppetto
folder permissions.

	When starting the Virgo server, the Eclipse console shows
information about the process. Every time a new module is deployed
properly a message like this one is displayed:

Installed bundle 'org.geppetto.model.neuroml' version '0.3.6'.
Starting bundle 'org.geppetto.model.neuroml' version '0.3.6'.
Started bundle 'org.geppetto.model.neuroml' version '0.3.6'.

However if the module hasn’t been deployed properly the version you
will see is 0.0.0 Double check any compilation or configuration
error with the project or the dependencies. Execute mvn install to
the project. This command can be executed while the server running.

	From time to time, the Eclipse Virgo connector doesn’t copy some
resources properly. Everything seems to run properly but some
actions are not working fine. You will have to copy the resources
files into the server (virgo/stage/[projectname]). This error
could be tricky to solve as the symptons can be totally diferent
depending on the resource that hasn’t been copied to the server.
Note that although the resources are located at /src/main/resources
in your project folder, in the Virgo Server they can be found in
virgo/stage/[projectname] folder outside any subfolders.

Examples

	There is no connection between the client and the server. For
instance, you can’t see the geppetto version in the console when
the main page is loaded. Also if you try to load a simulation it
keeps loading forever. -> The spring
configuration (META-INF/spring) in the org.geppetto.frontend
resources hasn’t been copied in the server.

	When executing aspect.getModel() an exception is raised. In the
log you will see a trace that says “FileNotFound” -> You will
have to copy the main/resources files of the
org.geppetto.model.neuroml project.

	Maven libraries that are downloaded when a mvn install is executed
for the first time or after a mvn clean, are stored typically in a
folder called .m2 inside your home folder. If the version of any
library changes maven automatically download it again. However, if
the lib content has changed but the lib version remains the same,
you will have to remove the lib in .m2 manually. Note that this is a
very uncommon case.

	You cannot deploy org.geppetto.frontend on your server. This can be
due to an Eclipse distribution that is missing some components. From
update site, install the below item:

Web, XML, Java EE and OSGi Enterprise Development -> Eclipse Java EE Developer Tools

Download Model and Results

Once you have run your experiment, you can then download the results
using the Download Model and Download Results options in the experiment
table (as shown in the diagram below):

[image: _images/download_model.gif]image

Geppetto and Dropbox

Linking Geppetto to Dropbox

Geppetto can be linked to your dropbox account via console’s command.

Run command:

G.linkDropBox();

A new tab/window will be open asking you to grant Geppetto privileges to
access your DropBox folder, which is needed to upload experiment
results.

[image: _images/dropbox.png]

After clicking “Allow”, you will be presented with a code. Copy and
paste that code, and run command G.linkDropBox() again. This time put
the key code inside the command as a parameter, in between brackets, as
in example below.

G.linkDropBox("place_key_code_here");

If all goes well, console will print out a message saying link to
DropBox was successful.

Uploading experiment results to dropbox

Experiment results can be uploaded to your dropbox account, after doing link steps
from section above. An experiment must be set to active, and be in
COMPLETED state in order to upload results. You will need to know id of
experiment, aspect path where results are stored, and the format of the
results you wish to upload Example of command below, remember to replace
parameters and experiment id for whatever you need it to be:

Project.getExperiments()[1].uploadResults("hhcell.electrical","RECORDING");

Instructions for setting up Geppetto on Eclipse Neon

Last Update: November 29th 2018

If you have any problems following this documentation, please drop us a line at
info@geppetto.org to receive an invitation to our
Slack channel, where we can assist you. You can also just send us a quick
question this way.

Another useful page that you might want to check if you any problems
with the below is the Tips for developer to configure/deploy Eclipse + Virgo [http://docs.geppetto.org/en/latest/devtips.html].

	Install Eclipse Oxygen for J2EE

	Download and install Eclipse
Oxygen [http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/oxygen3].

	Install Virgo Server and Geppetto Sources

	Now we need to install Virgo and clone the geppetto sources
locally unless you have done those steps already. If not follow
the instructions for either OSX or
Linux [http://docs.geppetto.org/en/latest/osxlinuxsetup.html] or
Windows [http://docs.geppetto.org/en/latest/windowssetup.html].
Follow the steps until Deploying Geppetto section and make sure
to use the eclipse flag when you use the update_server script.
./update_server eclipse
If previously you ran the script without the flag “eclipse” it
is possible that Virgo won’t be started with success from eclipse
due to the JARs and WARs archives already present, when they
should be uploaded upon deployment by Eclipse.
To avoid this you can follow the steps below:

	Wipe all the content in $SERVER_HOME/repository/usr/*

	Remove the folder $SERVER_HOME/work

	Remove the file $SERVER_HOME/pickup/geppetto.plan

	Run again the script update_server with the flag eclipse
(e.g. ./update_server.py eclipse).

	Now we need to import all the bundles that were cloned into
Eclipse, to do so click on File->Import-> “Import Existing
project into workspace” and follow the instructions.

	You now have all the Geppetto bundles in your workspace, let’s
add a link to the Virgo Server inside Eclipse. To do this we
first need to install the Eclipse Virgo plugin.

	Install Virgo IDE Tooling

	Help -> Install New Software

	Work With -> http://download.eclipse.org/virgo/release/tooling

	Select “Eclipse Virgo Tools” and install it, you will be asked
to restart Eclipse at the end.

	Click on Window -> Show View -> Others -> Servers

	From the new view create a new Virgo Runtime server (New Servers
Wizard -> EclipseRT -> Virgo runtime)

	Name it anything you like

	For installation directory put the folder where you unzipped the
virgo server above e.g. /opt/virgo-tomcat-serve-VERSION-NUMBER

	Once the server is created right click on it and choose add,
select all the bundles you wish to deploy and that’s it, at the
end of this step you should have no errors on the bundles. If
the bundles don’t show you need to add the Virgo Nature to them,
you can do so by right clicking on them on the Package Explorer
and selecting Virgo -> Add OSGi Bundle Project Nature. Once
you added the bundles to Virgo it should look like this:
[image: _images/mucT88s.png]image

	Before starting the server we need to make sure that the different bundles are deployed in the right order. Double click on the Virg server in the Server view, an editor will open. Look for the Artefacts Deployment Order pane and move the bundles up and down to reflect the following order. Save the content of the editor once you are done.

org.geppetto.model
org.geppetto.core
org.geppetto.simulation
anything else in any order
org.geppetto.frontend

You now have Geppetto configured in your Eclipse, right click on the server and choose debug or start, in the console you will see all the bundles loading up and you should see no errors. At the end of the process your server will be up and running, so just point your browser
to:

127.0.0.1:8080/org.geppetto.frontend/ [http://127.0.0.1:8080/org.geppetto.frontend/]

If you want to use the Webpack dev server for hot deployment using your
terminal go to the /org.geppetto.frontend/src/main/webapp/ folder and
run

npm start

Once the webpack devserver is running you can connect to it using the
port 8081 instead of 8080. Every change made to the web resources will
refresh automatically the server and update your browser.

The Geppetto Model explained

This section explains the Geppetto Model abstraction, its role in
Geppetto, and how it can be used to provide support for additional
domain-specific formats. In other words, being able to extract
information from domain-specific content (e.g. native input files for a
given simulator) and interact with that information within Geppetto.

The Geppetto Meta-Model is defined in a declarative way using Ecore, a
tool for building meta-models from the Eclipse Modeling Framework (EMF).
Introductory documentation for EMF can be found at the eclipse project
website [http://www.eclipse.org/modeling/emf/docs/?].

Main concepts

Every project that is loaded in Geppetto has a Geppetto model associated
to it. The Geppetto Model is a dynamic typed abstraction of the data structures we need for
our project.
In other words, Geppetto imports the project specific data into a model with
fully typed object descriptions.

When the frontends loads a project, the model (coming from the backend) is loaded;
while loading the model, the declared variables
are instantiated with the default values which are specified in the model.
The model comes with a full-featured reflection mechanism, which allows to inspect
and instantiate values through the Meta-Model specification.

Why the Geppetto Model Abstraction?

Geppetto was born from the need of describing computational models coming from neuroscience.
In this context, each model has its own structure and values that can evolve during
the experiments we are running upon the model.

The Geppetto Model is dynamic

We can represent the model with the usual tools
that we use in programming to represent data structures: variables, classes, values, parameters
within a life cycle in which variable values can change and can be represented visually.

Nothing that we cannot do with any programming language, except the fact that all of this
definitions in Geppetto are made dynamically: when we load a model, we are defining
a complete new set of typed data structures based on the Geppetto Meta-Model.
We have no limits on the models we can define, still having a fully typed model
system.

The Geppetto Model is fully serializable

The Geppetto Model can be serialized and is shared and synched between the backend and
the frontend of the application.

The Geppetto Model is typed

There are simpler ways than the Geppetto Model to defined dynamic structures.
For instance, we could define variables with any structure with a JSON markup.
JSON markup is not typed though. When we parse a JSON markup we must implicitly
know its semantics and write a specific manipulation logic consequently.
By defining the types we are kind of declaratively programming the visualization
and behaviours which can be automatically associated to the data through Geppetto
apis and components.
For example, a visual type can be visualized on the canvas, time series can be plotted, etc.
On the frontend, instances of different types can have different capabilities,
i.e. actions that can be activated from the variables of that types.

Geppetto Meta-Model

The Geppetto Meta-Model is a description of what can be
found inside a Geppetto model, hence the “meta”.
The main concepts to
understand from the Geppetto Meta-Model are Type, Variable and Value,
and they will be familiar to pretty much every developer.
A Geppetto model defines variables, which at some point will be instantiated;
each variable has a value and a
type. With the use of composite types we can define complex data structures.

Type

A Type
represents the structure of an entity and therefore defines something that
can be associated to one of multiple variables. In modern programming
languages this same concept is often referred to as Class.

There are
different built-in types defined in the Geppetto Meta-Model; the
CompositeType allows the developer to specify structured types with one or more variables.

Every type belongs to the Geppetto library which contains it.

Variable

A variable represents an
instance of a given type. This concept exists in every programming
language.
Every variable knows its type and initial value.

Value

A value is something that can be assigned
to a variable or to a type (the default value) a concept that once again
exists in every programming language. There are different kinds of values
defined in the Geppetto meta-model and every existing type has pretty
much one or more corresponding values defined.

Model at runtime

The Geppetto model is created on the backend usually from a EMF specification file (xmi).
Domain specific Geppetto types and values are created dynamically at runtime from possibly any file format provided a Model Interpreter is available for that format.

Upon receiving a Geppetto Model from the backend, when loading a given Geppetto Project, the frontend will instantiate it.

Instantiated Geppetto Types are mapped to JavaScript objects (e.g. a population of one cell Type would become a JavaScript array containing Instances of that Type) and augmented with specific Capabilities which confer on them the ability to be accessed via a specific API.

Instances

Variables are defined with a type and a default value. When the Geppetto model
is loaded on the frontend its top-level variables are instantiated (the model is only instantiated in the client).
Every instance knows its value and variable, each variable knows its type(s).
A type in turn may contain multiple variables (as is the case of CompositeType)
that can be instantiated. The instantiation of inner variables is done on demand
at runtime when needed.

For example, let’s start from a model having a top level variable x of type T. The
type T is a CompositeType defining the variables t1 and t2.
When the model is loaded we will have an instance called x on our Geppetto runtime.
So we can:

	Use that instance x in the Geppetto console

	Access the instance through the global Javascript variable x

	Create the instance from Javascript through Instances.getInstance('x')

	Create the instance from Javascript through Instances.getInstance('x.t1')

	Use the instance sub variables through x.t1, x.t2 from the Geppetto console

Note that we are not guaranteed to access x.t1 from Javascript until
Instances.getInstance('x.t1') is invoked: sub instances are created on demand.

Capabilities

The client will inject Capabilities to an instance depending on their type.
A capability will confer to the Javascript object an API to interact with the
specifics of its type. Thus we have type-specific methods as in OOP languages.

So, for instance, if a Model Interpreter in the backend defined a custom Type including a State Variable, upon instantiation in the frontend, this would become a JavaScript object with an injected StateVariableCapability containing methods specific for state variables, e.g. getUnit(), getInitialValue(), etc.

This has the advantage of giving developers the ability to build UI components that can interact with the Geppetto Model in an object-oriented way, and allow all the user operations to be fully scriptable, reproducible and testable (e.g. a UI button designed to plot a state variable would call Plot.plotData(myStateVariable.getTimeSeries()). The same principles apply when a custom Type defining a cell morphology (Values like Sphere and Cylinder are available to this end in the Geppetto Model Abstraction) is sent to the frontend and passed to the 3D Canvas component using its API for display.

Instances and UI Components: behaviours

Some UI component are initialized from instances and use their knowledge of the types and the
capabilities to initialize the visualization or other behaviours.

	ControlPanel: loads by default all Instances of type VisualType

	Canvas: shows Instances of type VisualType on the 3D Canvas

[comment]: <> (TO be completed)

Working on the backend

Let’s have a look at some
examples that will show how the model abstraction can be used in
practice. In these examples we will use the JAVA API that is generated
for us by EMF to create the models.

Creating a cell

Let’s say we want to create a simple type that represents a biological
cell. What would we need to do?

SimpleType cellType = TypesFactory.eINSTANCE.createSimpleType();
cellType.setId("cell");
cellType.setName("Cell");

GeppettoLibrary myLibrary = GeppettoFactory.eINSTANCE.createGeppettoLibrary();
myLibrary.setId("myLibrary");
myLibrary.getTypes().add(cellType);

That’s easy right? With these three simple lines we are creating a new
simple type in Geppetto. A simple type only has a name, what will be
displayed in the UI, and an id which is what will be used every time we
want to access the type. We have then added our brand new type to a
brand new library we created. If we were to feed this model to Geppetto,
the type with its two fields contained inside “myLibrary” is what we’d
see. Let’s see how difficult it is to see a Sphere in the Geppetto 3D
canvas when we instantiate our cell.

The first thing we want to get a handle on is what we call a VisualType. A
VisualType tells Geppetto that something can be visualised and comes
from inside the Geppetto Common Library. The Geppetto Common Library is
a collection of types that Geppetto instantiates by default and that can
be used by every domain and application. It is no different from the
“myLibrary” we created above, only this one comes from Geppetto.

VisualType visualType = (VisualType) commonLibrary.getType(TypesPackage.Literals.VISUAL_TYPE);

Variable soma = VariablesFactory.eINSTANCE.createVariable();
soma.setId("soma");
soma.getTypes().add(visualType);

Sphere sphere = ValuesFactory.eINSTANCE.createSphere();
sphere.setRadius(10);
Point origin = ValuesFactory.eINSTANCE.createPoint(); //x=0,y=0,z=0 by default
sphere.setPosition(origin);

soma.getInitialValues().put(visualType, sphere);

CompositeVisualType morphology = TypesFactory.eINSTANCE.createCompositeVisualType();
morphology.setId("morphology");
morphology.getVariables.add(soma);

cellType.setVisualType(morphology);

So what have we done? We have created a variable we called “soma” and we
have made it of type VisualType, reusing what comes from the
commonLibrary. We have created a Sphere which is one of the VisualValues
available through the Geppetto Model, we gave it radius 10, and we placed
it at the origin of our scene. We have then assigned this sphere as the
initial value of our variable soma. What we created next is
“morphology”, a CompositeVisualType to which we have added the soma we
just created. The last line assigns this morphology to the cell we
created. What would we see if we were to feed this type to the frontend?

[image: _images/sphere.png]image

That looks good! However you might be wondering, “Why are we seeing
anything on screen at all? We just created a cellType; nobody
instantiated anything. You said this was going to be like any other
programming language!” Which is all correct: you need to instantiate a
type if you want it to come into existence, and that is what we did.
We just haven’t shown you yet. Here is how you do it:

Variable myCell = VariablesFactory.eINSTANCE.createVariable();
myCell.setId("myCell");
myCell.getTypes().add(cellType)

geppettoModel.getLibraries().add(myLibrary);
geppettoModel.getVariables().add(myCell);

So this is how you instantiate something, just as you’d expect. We
create a variable of the type that we want, cellType in this case, and we
add it at the root level in the geppettoModel, which in this case
represents the Java object of our Geppetto Model.

Working on the frontend

Visual variables

Javascript APIs

Instances

Instances is a global service which allows to extract instances from the model.
An instance is a wrapper for available with inspection capabilities: from an instance we can start the inspection of everyhting that is below.

	Instances.getInstance(variablePath): allows to instantiate a variable if not already instantiated and returns it. After an instance is created it can be accessed from the global scope through its variable name

	myInstance.getVariable(): returns the variable definition for the instance, starting inspection. A typical use is myInstance.getVariable().getType().getVariables(), which gives all the available fields for that instance.

	myInstance.getPath(): gets the full path within the model

State variable capability

	myInstance.getValue(): returns the actual value for that instance

Values

ImportValue

	myValue.resolve(callback): resolves the current value on runtime

…

Variables

…

Manager

…

ModelFactory

	GEPPETTO.ModelFactory.allPaths: gets all paths available on the current model

Geppetto Meta-model EMF library

Why EMF?
The Eclipse Modelling Framework is an industry grade technology which
has been around for more than 15 years and is currently used in thousands
of professional software and tools. Ecore allows the developer to
specify all the entities (called EClass) and relationships that exist in
a given meta-model allowing the developer to define all the constraints
(e.g. containment, hierarchy, boundary conditions, etc.) that exist in
the model in a declarative way. EMF adds the ability to generate, from
the model definition, the code to use the model in a multitude of
languages, making pretty much every line of model-related code bug free.
EMF supports XMI, a dialect of XML, as default serialization standard,
making it easy to serialize and deserialize models in a robust way,
performing a validation against the schema through every step of the
process. Geppetto also takes advantage of EMF-JSON, an extension that makes
it possible to serialize the models to JSON as well.

Model

This is the top-level package and it contains many of the Geppetto
abstractions.

[image: _images/model.png]image

GeppettoModel is the EClass that represents the top level node of a
Geppetto Model. Node is an abstract EClass, extended by many entities,
which gives the ability to associate an id, a name and a set of Tags to
every entity. The Geppetto Library is simply a container for types. In a
Geppetto Model there can be one or multiple libraries defined.

Types

This package contains the definition of all the types defined in the
Geppetto Meta-model.

[image: _images/types.png]image

An abstract type, simply called Type, is defined and is extended by
every existing type. Every Type can have zero or many superTypes
(multiple hierarchy that is), an optional VisualType (which specifies
how that type can visualised in the 3D environment) and an optional
DomainModel (to specify what domain is declaring that particular type).

The Geppetto Meta-model defines a set of types to represent dynamic
systems. These types can be used by every developer that wishes to extend
Geppetto to add support for a particular modeling specification.

StateVariableType and
ParameterType define, respectively, a state variable and a parameter of a
system. Dynamics describes the dynamics of the system specifying a
Function and a PhysicalQuantity as initalCondition. A Function is
defined as an Expression and a list of Arguments.

An ArrayType defines a type that when instantiated will result in multiple instances of the type of the array to be created. After instantiation each element of the array can be accessed through an index. The type of the Array can be any Geppetto Type. A
VisualType is an abstract EClass that defines a particular kind of type
that can be visualised in the 3D environment. A VisualType only allows
for a VisualValue to be associated to it (e.g. a Cylinder, a Sphere, an
OBJ, etc.).

Values

This package contains the definition of all the values that can be
associated to variables and types.

[image: _images/values.png]image

A Quantity defines the result of a measure. When we associate a Unit to
a Quantity we obtain a PhysicalQuantity.
A special mention to CompositeValue that defines a structure value that
can be assigned to a variable of type CompositeType. VisualValues can be
assigned to variables of type VisualType. ArrayValues can be assigned to
variables of type ArrayType and specifies the index for each one of the
individual values.

Variable

This package contains the definition of the variable EClass.

[image: _images/variables.png]image

Advanced

Multi-scale definition

Geppetto allows a variable to instantiate one or multiple
types, a feature that makes it possible to support multi-scale
definitions (imagine a variable that at one scale is defined simply as a
parameter and at another scale is mapped to a whole computational model
with sophisticated dynamics).

 ******************************* MenuButton Component
Customization*******************************

MenuButton is a button component that displays a list of executable
commands.

[image: _images/menubutton.png]image

This button component can be reused, and added to the DOM at different
positions with different list options.

Custom Configuration ——————The MenuButton can be configured
through a JSON object which is passed when the button is created. The
code below is an example of some of the things you can configure through
properties.

var configuration = {
 id : "menuButton",
 openByDefault : false,
 closeOnClick : false,
 label: ' Results',
 iconOn : 'fa fa-caret-square-o-up' ,
 iconOff : 'fa fa-caret-square-o-down',
 menuPosition : null,
 menuSize : {height : "auto", width : 300},
 onClickHandler : clickHandler,
 menuItems : [
 {
 label: "Plot all recorded variables",
 action: "window.plotAllRecordedVariables();",
 value : "plot_recorded_variables"
 },
 {
 label: "Play step by step",
 action: "Project.getActiveExperiment().play({step:1});",
 value : "play_speed_1"
 }
]
 };

	‘id’: {String} ID used to find this new button

	‘openByDefault’: {boolean} Drop down opens by default when button is added.

	‘closeOnClick’:
{boolean} Drop down closes when an element is clicked

	‘label’: {String} Label that is displayed in button

	‘iconOn’:
{String} Class of Font Awesome icon to used and be displayed in button when drop down is open

	‘iconOff’:
{String} Class of Font Awesome icon to used and be displayed in button when drop down is closed

	‘menuPositon’:
{JSON} Object with properties ‘top’,’bottom’,’left’,’right’ that gives the drop down menu its position e.g. {top:0,bottom:0,left:0,right:0}

	‘menuSize’:
{JSON} Object with properties ‘width’ and ‘height’ that gives the drop down menu its size e.g. {width:100,height :100}

	‘onClickHandler’:
{function} External Handler that is notified when element from drop down is clicked. See below for more info

	‘menuItems’: {array} Drop down opens by default when button is added.

Using an External Click Handler ——————The button can be
added an external click handler in the form of a javascript function,
which will be notified when an element in the button’s drop down has
been clicked. The external handler function takes a parameter, which is
the value property of the element that was clicked.

The configuration in the code block above specifies an external handler
with the property “onClickHandler”, the code below is an example of the
what the structure of the external handler passed should be.

var clickHandler = function(value){
 //Do Something with value returned
};

Using MenuButton

To add a new button, call addComponent() function in
GEPPETTO.ComponentFactory class. The code below is an example of how to
add it, replace “MenuButton” with a different id for your own button
component.

GEPPETTO.ComponentFactory.addComponent('MENUBUTTON', {configuration : configuration}, document.getElementById("MenuButton"));

Source Setup on OSX and Linux

This will tell you how to get the Geppetto source code and build it on a
OSX and Linux machine (OSX? Linux? I’m on
Windows! [http://docs.geppetto.org/en/latest/windowssetup.html]).

Note: if you just want to play with a sample Geppetto deployment you
don’t need to install anything, just visit https://live.geppetto.org.
If you want to install the latest released sample deployment just
download it from
here [https://github.com/openworm/org.geppetto/releases] and run
./bin/startup.sh. The following instructions are if you want to setup
Geppetto from sources.

Psst: If you get stuck at any point, you can join our Slack channel and we
will assist you. Send an email to info@geppetto.org
for an invite or if you just have a quick question.
You can also send us screenshots and log files!

Prerequisite software

You need a bunch of other software to install Geppetto from sources. The
good news: You probably have some of this on your machine already!

OSX and Linux

	Java SE Development Kit 8

	Python 2.7 or Python 3

	Virgo Server for Apache Tomcat: ZIP file [http://www.eclipse.org/downloads/download.php?file=/virgo/release/VP/3.7.2.RELEASE/virgo-tomcat-server-3.7.2.RELEASE.zip]
unpack it to your desired location by:

unzip virgo-tomcat-server-3.7.2.RELEASE.zip -d <desired directory>

	As of Virgo 3.7.2, a couple of extra steps are needed to make it work with Geppetto.

	Once virgo has been unzipped, create folder named “usr” inside <virgo_directory>/repository

	Replace files “tomcat-server.xml” and “javar-server.profile” in <virgo_directory>/configuration with files of the same name found here tomcat-server.xml [https://raw.githubusercontent.com/openworm/org.geppetto/development/utilities/docker/geppetto/tomcat-server.xml] and java-server.profile [https://raw.githubusercontent.com/openworm/org.geppetto/development/utilities/docker/geppetto/java-server.profile]

OSX

	homebrew (see here [http://brew.sh/]):
ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

	Maven: brew install maven

	git: brew install git

	pip: Instructions [https://pip.pypa.io/en/latest/installing.html]

	Apache Tomcat: brew install tomcat

Linux: Debian and variants (e.g. Ubuntu)

This should also work for alternative distributions, by substituting
apt-get with the appropriate package manager, e.g. pacman for Arch,
yum for Fedora and so forth.

	homebrew (see
here [https://docs.brew.sh/Homebrew-on-Linux])

	Maven: sudo apt-get install maven

	git: sudo apt-get install git

	pip: sudo apt-get install python-pip

	Apache Tomcat: sudo apt-get install tomcat8 or brew install tomcat@8

Environment Variables

Environment variables tell your operating system and other programs
where you installed certain software.

Linux Variables

Create variables with the following names and values, or look if they
already exist:

	JAVA_HOME: path to Java SE Development Kit 8

	SERVER_HOME: path to Virgo Server for Apache Tomcat

	MVN_HOME: path to Maven

You can do this for example in .bashrc with:

export MVN_HOME="/usr/share/maven"
export JAVA_HOME="/usr/lib/jvm/java-8-openjdk-amd64"
export SERVER_HOME="/path/to/virgo-tomcat-server-3.7.2.RELEASE"

Mac OS X Variables

export MVN_HOME="$(brew --prefix maven)/libexec"
export JAVA_HOME="/usr/lib/jvm/java-1.8.0-openjdk"
export SERVER_HOME="/opt/virgo-tomcat-server-3.7.2.RELEASE"

The SERVER_HOME directory may be one of the directories that you are
prompted to install to. Once you find where virgo tomcat is installed
to, use that as your directory.

Also, following the guide above to installing homebrew on Linux, you
made need to add extra details to your bashrc file.

OK, that was everything you need, let's get the source code now.

 Persistence

Persistence

Background

Geppetto recently developed the possibility to persist data across
multiple runs by storing it into a relational database. The Data Model
(DB Persisted) tab in this
https://www.lucidchart.com/documents/edit/ae8bd4d6-2226-4aee-9d56-774e323188a6/2
document describes the object-oriented design that acts as a base for
the database model.

The org.geppetto.core bundle defines interfaces corresponding to this
model in the org.geppetto.core.data.model package. Also, the same bundle
defines POJO implementations for these interfaces in the
org.geppetto.core.data.model.local package. These POJO implementations
are used for the case when Geppetto is running without DB persistence
support.

The new org.geppetto.persistence bundle provides database friendly
implementations of the interfaces defined in the org.geppetto.core
bundle in its org.geppetto.persistence.db.model package. We are using
the JDO implementation called DataNucleus which helps us hide multiple
database related details behind JDO APIs. Also, the schema is generated
from Java code, so no need to keep track of database scripts for this.
We have chosen MySQL as the database implementation for now, but if
needed at some point, we will be able to switch to another SQL or noSQL
based database engine.

Getting started with database

	Download and install MySQL. You can download the appropriate version
of MySQL here: http://dev.mysql.com/downloads/mysql/

	Once downloaded, start the MySQL server installation and follow
the instructions. When asked about the setup type, you can select a
“Custom” installation and manually select what extra tools may
be needed. There will be some configuration steps as well and you
will be asked to provide a password for the server admin user. The
installation package includes the “MySQL Workbench” as well which is
a client tool for managing MySQL servers. However, developers may
want to choose another tool for this.

	Start MySQL Workbench (or other management UI client) and create a
new database and a new database user. You can use the script below
for this

create database geppetto;

create user user_name identified by ‘password’;

grant all privileges on geppetto.* to <’user_name’@’localhost>’
identified by ‘password’;

	You can now checkout the org.geppetto.persistence bundle and make
sure Virgo deploys it as well at runtime

	A file like the one below will need to be added to the
{user.home}/geppetto/db.properties

javax.jdo.option.ConnectionURL=jdbc:mysql://localhost/geppetto

javax.jdo.option.ConnectionDriverName=com.mysql.jdbc.Driver

javax.jdo.option.ConnectionUserName=user_name

javax.jdo.option.ConnectionPassword=password

	Now, when starting Virgo, if the persistence bundle is deployed then
there will be database support available

	In order to have some test data in the database, there is a
DBTestData class available in the org.geppetto.persistence.util
package in the org.geppetto.persistence bundle which can be run as a
standalone Java application and which will handle the population of
test data.

The biggest issue with all this is related to DataNucleus. There is an
“enhance” goal in the persistence pom.xml that, when running, it
enhances the model classes for being supported by DataNucleus. However,
sometimes mvn -Dhttps.protocols=TLSv1.2 clean install, Maven Update are not sufficient. A
right-click on the Virgo Runtime server, followed by “Clean…” usually
fixes the issue with the classes.

It turns out that not even “Clean…” helps, so the remaining approach
is to stop the server, run mvn -Dhttps.protocols=TLSv1.2 clean install on the persistence bundle,
overwrite the stage/org.geppetoo.persistence.jar/org in Virgo with the
org directory in org.geppetto.persistence/target/classes and try again.

A longer term solution would be to find the way to make sure that the
enhancer runs as part of the Maven / Update Project.

Setting up for Amazon S3 support

	Ask for the GeppettoDBAdmin user credentials and save them into a
file located in {user.home}/geppetto/aws.credentials having a
structure like the one below:

accessKey=the GeppettoDBAdmin access key

secretKey=the GeppettoDBAdmin secret key

	Set the S3 bucket name in org.geppetto.core/src/main/resources/Geppetto.properties

	The APIs for handling S3 persistence operations are located in the
S3Manager class in the org.geppetto.core bundle

 Plot Widget

Plot Widget

This widget allows Geppetto plotting of simulation variables and data

A new Plot widget can be created from the console using the command

G.addWidget(Widgets.PLOT)

Alternatively Shortcut Key: Ctl+Alt+P - Toggles existing plotting
widgets, if none exist it creates a new one.

Plotting widgets can plot variables straight from the simulation, given
you are watching the variables at the time you start plotting it. Each
variable will have its own line plot, and it’s accompanied by a label to
distinguish it from other variables being drawn.

In order to plot a Simulation variable, you can use the command

Plot1.plotData(variable);

Where “Plot1” is the name of the plotting widget that was returned after
creation.

[image: _images/Plot1.png]image

Other variables can also be plotted, as a two dimensional array plotted
against x and y coordinates. You can customize your line plot and change
the dimensions of the axis in your plot, use the “Commands” section as a
reference to see what options you have to modify your plot.

[image: _images/Sf9byfH.png]image

Widget Settings and Options:

On the top of the Plot Widget you’ll find a toolbar, with it you can do:
– Reset the widget to its original view with the first icon
– Toggle the legend’s visibility with the second icon
– Download a screenshot of the widget with the third icon
– Download the variable’s data with the fourth icon

[image: _images/Plot1-Toolbar.png]image

Showing/Hiding Legend———-To toggle the legend visibility
use the command below:

Plot1.showLegend(true)

Download X/Y Axes Data———-Used the command below for downloading
a zip file containing the files with the Plot’s variable data:

Plot1.downloadPlotData()

Download Screenshot of Plot Widget———Saving a screenshot of the
Plot widget can be achieved with:

Plot1.downloadImage(type)

Where type can be : “JPEG”, “PNG” or “SVG”

Settings ———-User can modify a Plot Widget settings,
including: x and y axis, line plot’s visibility of points and lines.
Create a javascript object in the console specifying the options, and
use setOptions() with the created object to set the options for the Plot
Widget.

The following values can be used to modify a Plot settings.

	yaxis - Object that sets a minimimum and maximum value for the Y
axis of the graph. Use {yaxis : { min : ‘value’, max : ‘value’}} to
set yaxis.

	xaxis - Object that sets a minimimum and maximum value for the X
axis of the graph. Use {xaxis : { min : ‘value’, max : ‘value’}} to
set xaxis.

	showlegend - Boolean used to toggle visibility of the Plot’s legend

	mode : Type of graph, “lines” for line graphs or “markers” for graphs
made with points.

Example:

var linePlotOptions ={
		showlegend : true,
 yaxis: { min : 0,max : 15},
 xaxis: {min : 0, max : 15},
 modes : "lines"
}

//set the options for the plot
plot1.setPlotOptions(plotOptions);

 Popup Widget

Popup Widget

The popup widget allows the user to create a simple widget to display
informative text / HTML.

The following code creates a widget to add a simple text description to
the model:

G.addWidget(Widgets.POPUP);
Popup1.setName("Description");
Popup1.setMessage("Model description");

An example of how this might look like with simple text and HTML is
shown below:

[image: _images/popup.png]image

[image: _images/popup2.png]image

Other than for displaying simple text / HTML, the popup widget can be
used to let the user interact with the simulation associating scripts to
user actions via HTML anchor elements. Anchor elements can point to
Geppetto entity nodes via the ‘instancepath’ attribute, and custom
handlers can be associated to user actions (browser events such as
‘click’, ‘dblclick’, etc.) via the addCustomNodeHandler method. The
entity node will be received as a parameter of the custom handler.

An example is shown below:

G.addWidget(Widgets.POPUP);
Popup2.addCustomNodeHandler(function(node){alert(node.getName());}, 'click', 'myDomainType');
Popup2.setMessage("Some HTML here linking to a specific entity entity");

In the example above, when the user clicks on the entity link the custom
handler will be invoked if MyEntity is of type myDomainType. The custom
handler takes the entity node as a parameter, coming from the
instancepath attribute of the anchor element. If the value in the
instancepath attribute does not map to an actual entity in the active
Geppetto experiment, the custom handler ‘path’ parameter will be
undefined.

The domain type is an optional parameter, if omitted the handler will be
applied to all the anchor elements with an ‘instancepath’ attribute.

 Recording Variables

Recording Variables

Note: Recording variables and running simulations are only possible in
Geppetto deployments that support these functionalities.

Any state variable that exists in the model can be recorded prior to
running a simulation, meaning it will be possible to subsequently plot
its values once the simulation is complete.

[image: _images/record_variable.gif]image

You can record a variable by searching for it in the search bar (open it
using the little search icon on the left hand side of the screen

[image: _images/search-icon.png]image

or pressing Ctrl+Space) and clicking on the Record icon

[image: _images/record.png]image

The icon signifying state variables that can be recorded is the
superscript icon:

[image: _images/superscript.png]image

 Recordings for dev

Recordings for dev

A recording stores all the raw data of your simulation run. In Geppetto,
a recording is simply a file in the popular binary data format HDF5.

Furthermore, we developed some handy tools to create Geppetto recordings
from NEURON and Brian simulations. Just replay these in Geppetto, and
couple your existing models with any other simulations that runs in
Geppetto.

Looking at a recording

A convenient way to look (as well as edit) a recording is
HDFView [http://www.hdfgroup.org/products/java/hdfview/], a graphical
browser for HDF5 files.

If you want to dig deeper, there are several implementations of HDF5 for
the command line and all major programming languages. We have found
Python and the h5py [http://www.h5py.org/] package to be a pretty
intuitive solution.

Why don’t you go ahead and try that with one of our sample
recordings [https://github.com/openworm/org.geppetto.recording/tree/master/samples]?

Creating a recording

We have developed a Python 2.7 package which makes it extremely simple
to create recordings. The package is called org.geppetto.recording and
available on
PyPi [https://pypi.python.org/pypi/org.geppetto.recording/0.0.1]. For
install instructions and code, see the Github
repository [https://github.com/openworm/org.geppetto.recording].

As recording files are plain HDF5, they can also be created and
manipulated by many other tools and programming languages
(examples [http://www.hdfgroup.org/HDF5/examples/]).

Manually

You successfully installed org.geppetto.recording? Cool, then let’s go
down to Python and import everything that we need:

>>> from org.geppetto.recording.creators import RecordingCreator, MetaType

RecordingCreator is the base class to create a recording for Geppetto.
It allows you to add variables and values, define a time step vector
(fixed or variable) and add metadata for the recording. Other creators
(for example for NEURON or Brian) inherit from this class, so you can
always manipulate their data manually.

To create a new recording file, run:

>>> c = RecordingCreator('recording_file.h5')

If you see nothing happen on your file system, don’t worry: The actual
file will be written in the end. This just sets up everything and makes
sure the file name is available.

Next, we will populate our recording with some values:

>>> c.add_values('cell.voltage', [-60.0, -59.9, -59.8], 'mV', MetaType.STATE_VARIABLE)
>>> c.add_values('cell.voltage', -59.7)
>>> c.add_values('cell.radius', 20, 'um', MetaType.PARAMETER)

As you can see, the name of the variable can be dot separated to express
a hierarchical relation. This hierarchy will also be represented in the
HDF5 file later (see File Format_).

The add_values method can both take single values or iterables of
values. Its last parameter describes which kind of variable you want to
store (the so called meta type). It can be one of
MetaType.STATE_VARIABLE, MetaType.PARAMETER, MetaType.PROPERTY,
MetaType.EVENT. Furthermore, you can call add_values multiple times
for the same variable to append further values (you can omit unit and
meta type then).

A simulation is nothing without time! In Geppetto, each value of a state
variables is associated with a point in time (the variable changes its
“state” over time). You can either add a fixed time step (i. e. the
interval between two time points):

>>> c.set_time_step(0.1, 'ms')

Or you can supply the individual time points as you like:

>>> c.add_time_points([0.1, 0.15, 0.3], 'ms')

Just as with values, you can add single or multiple time points and call
add_time_points again to append. Keep in mind to only use one of these
two methods - we don’t want to have multiple timelines ;)

Next to values, the recording file can also store metadata for your
simulation. Simply call:

>>> c.add_metadata('version', 1.0)

When you have added enough values, tell the creator to flush everything
to file by calling:

>>> c.create()

There you go! If you want to have a look at your new recording, try
HDFView [http://www.hdfgroup.org/products/java/hdfview/] (or read
Looking at a recording_).

Complete documentation for the RecordingCreator class coming soon!

From Brian

From NEURON

File format

Geppetto’s recordings are plain HDF5 [http://www.hdfgroup.org/HDF5/]
files.

HDF5 is an efficient binary format and very popular amongst the
scientific community. Furthermore, it is hierarchical: Every HDF5 file
is made up of groups (these act like folders in a file system) and
datasets (these act like files in a file system). Both groups and
datasets can have attributes, which makes it fairly easy to store
metadata along with your actual data. See also the official
tutorial [http://www.hdfgroup.org/HDF5/Tutor/fileorg.html].

A Geppetto recording is a pretty intuitive implementation of HDF5:
Hierarchies of entities and variables are expressed 1:1 as hierarchies
in HDF5. For example, if you have one variable cell.voltage and
another one cell.radius in your simulation, there will be one group
cell with two datasets voltage and radius in the file. The unit
and meta type of these variables will be stored as attributes to their
respective datasets.

Additionally, there will be one dataset in the root group called time.
This is simply an array of all time points during the simulation (these
are associated with the state variables in the recording).

Global metadata for the recording is stored as attributes of the root
group.

 Running an Experiment

Running an Experiment

Note: Running simulations is only possible in Geppetto deployments that
support this functionality.

Once you are happy with what variables you will record and your
experiment parameters, you can run the experiment. The Run button in the
upper bar should be available to you. When you click it, the status of
the experiment will change to show you both that it is queued for
running and that it is completed. The image below shows playback results
from a completed experiment.

[image: _images/run_experiment.gif]image

Once your experiment is finished, you can use the Play button to plot
all the recorded variables that have been simulated.

[image: _images/playback_experiment.gif]image

If you want to plot a specific variable that you recorded you will be
able to do so using the search bar to look for that variable and using
the “Plot” icon. The list of all the variables recorded in a given
experiment is available clicking on the “Recorded variables” link in the
Experiment table.

[image: _images/recorded_variables_plotted.png]image

Clicking on the Results button at the top of the screen will let you
rapidly access some default actions, including the ability to see the
cells for which you recorded the membrane potential spiking!

[image: _images/membrane_spiking.png]image

 <no title>

 * Scatter 3D Widget*

The documentation for this widget is currently under development.

 Setting Model Parameters

Setting Model Parameters

Note: Setting model parameters and running simulations are only possible
in Geppetto deployments that support these functionalities.

Prior to running an experiment you can modify the values of any parameter in your model using the control panel (see basics for a review of the control panel).

The parameters tab in the control panel is signified by [image: _images/parameter.png]. Use the search filter to find parameters quickly. Any adjusted values will be highlighted in yellow.
Please note that parameters can only be edited when the project is persisted (if your deployment uses the persistence bundle) and when the active experiment is in the design stage.

 Lightspeed Search Customization

Lightspeed Search Customization

The lightspeed search (CTRL+SPACE or the magnifying glass button on the
left bar to open) lets users search for instances and potential
instances in a given Geppetto project.

[image: _images/spotlight.png]image

This search functionality can be interacted with via its API. The main
interaction currently available and exposed to developers is the open
command, that combined with various parameters opens the spotlight with
various options.

Open in Search Flow ———–

GEPPETTO.Spotlight.open(GEPPETTO.Resources.SEARCH_FLOW);

This is the default flow that is triggered when the user opens the
lightspeed search with the “SEARCH_FLOW” parameter or with no
parameters. The search runs on all potential instances in the scene.

Open in Run Flow ——–

GEPPETTO.Spotlight.open(GEPPETTO.Resources.RUN_FLOW);

This flow is triggered when the user hits the run button (or equivalent
API command). A default suggestion is added to the spotlight to provide
the user with the ability to record all state variables in the current
model.

Open in Play Flow ———

GEPPETTO.Spotlight.open(GEPPETTO.Resources.PLAY_FLOW);

This flow is triggered when the user hits the play button (or equivalent
API command). A default suggestion is added to the spotlight to provide
the user with the ability to plot all recorded state variables available
in the instance tree.

Custom Suggestions

Suggestions can be added to the lightspeed search via the .addSuggestion
API method, and they can be associated with flows that will trigger
them.

Custom actions and icons can be associated to suggestions as shown in
the example below (these suggestions will show up in the list of
suggestions when the user triggers the play flow by clicking the play
button or using equivalent API commands):

var plotSample = {
 "label": "Plot all recorded variables",
 "actions": [
 "var p=G.addWidget(0).setName('Recorded Variables');",
 "$.each(Project.getActiveExperiment().getWatchedVariables(true,false),function(index,value){p.plotData(value)});"
],
 "icon": "fa-area-chart"
};

this.addSuggestion(plotSample, GEPPETTO.Resources.PLAY_FLOW);

What Next?

Currently ongoing:

	Add the .addDataSource API method to allow additional datasources to
be added via script

Backlog:

	Make capabilities based configuration configurable via script

	Share capabilities based configuration with the control panel

 <no title>

 * Tree Visualizer Widget*

The following commands will let you load up a tree visualizer, assuming
that you have an entity loaded up named ‘net’:

G.addWidget(GEPPETTO.Widgets.TREEVISUALISERDAT);
TreeVisualiserDAT1.setData(net);

Note that you can pass any node to a tree visualizer, e.g. assuming that
you have a sub entity named ‘muscle_0’:

TreeVisualiserDAT1.setData(net.muscle_0);

The properties of tree visualizer widget can be easily set as for any
other widget:

TreeVisualiserDAT1.setSize(50,200);
TreeVisualiserDAT1.setPosition(100,200);
TreeVisualiserDAT1.setName("MyTree");

If the Model sub tree for a given aspect is empty, remember that the
model tree is not populated by default but can easily be done with the
following command (assuming an entity named ‘net’ containing an aspect
named ‘electrical’):

net.electrical.getModelTree();

 User documentation

User documentation

The basics

Geppetto widgets

Recording variables

Setting model parameters

Running an experiment

Download models and simulation results

Dropbox integration

 Geppetto basics

Geppetto basics

This section is your key to getting started with Geppetto. It will
explain the Geppetto interface, loading projects, opening widgets, and
running simulations. When you are finished reading this section, you
will understand how Geppetto works and how to use it to explore a
computational model.

	Learning the interface

	Dashboard

	Project workspace

Learning the interface

Geppetto has two main interfaces: the Dashboard and the Project
workspace. The purpose of the dashboard is to easily view at a glance
all the projects that are available to the user.

[image: _images/dashboard.png]image

Dashboard - In the demo deployment of Geppetto the dashboard shows
some sample projects for a guest user.

Selecting a project in the left pane of the dashboard will reveal
project details in the right pane. Double clicking on a project in the
left pane will open the selected project in a new browser tab.

[image: _images/workspace.png]image

Project workspace - The project workspace is opened by double
clicking on a given project in the dashboard. This view shows the
morphologies, metadata and simulation data associated with a given
project.

Dashboard

The dashboard is the main entry point to a Geppetto based application.
The dashboard shows you which projects are available to you. The top
right corner indicates which user is logged in for the current session.
In the demo deployment of Geppetto this will read “Guest” because there
is no persistence database behind it. Geppetto can be configured to work
with user accounts.

Projects

Project

A Geppetto project contains the project metadata, information about the experiments, information about the state of the workspace and a link to the Geppetto model. For more details about how a Geppetto model is defined click here. A project allows you to perform multiple computational experiments on the model associated to the project.

The bar at the top allows you to filter the list of projects, just type in it to search for a specific one. The right pane shows which
experiments are available in the selected project.

[image: _images/experimentDashboard.png]image

Experiments

Experiment

A computational experiment in Geppetto lets you specify what value you want to assign to the parameters available in your model and
which variables you wish to record when you run a simulation of your model.

Recorded variables are called watched variables while the
parameters are called model parameters. An experiment also
allows you to specify the simulation parameters such as
timestep, simulation length and which simulator to use in the
given experiment. Watched variables and model/simulation parameters
can be edited from the Project workspace (explained later in
this tutorial).

An experiment can be in multiple states indicated by a different colour:

Design (Orange)

The experiment is in design state and editable. It is possible to select which variables are going to be watched when the experiment will run and set model/simulation parameters associated with it.

Queued (Blue)

The experiment simulation has been queued and will be executed by the Geppetto scheduler as soon as possible (depending on how many
experiments are in the queue). From now on the experiment is “read only”, you can no longer add variables to the watch list or edit parameter values.

Running (Yellow)

The experiment simulation is currently being executed.

Complete (Green)

The experiment simulation is completed. It is now possible to replay it and visualize the simulation results. Experiment replay and model visualization are accessible from the Project Workspace view (covered later in this document).

Error (Red)

An error occurred while executing the experiment simulation.

Project workspace

Double clicking a project from the dashboard will open the project in
the project workspace. The project workspace allows the user to
visualize the models associated with the project, to create experiments
and to simulate them with different available simulators.

The default experiment will be loaded when the project is opened, and it
will be highlighted in the “experiments” tab of the console at the
bottom of the screen. If there is more than one experiment for the
current project, multiple rows will appear in the experiments tab.
Clicking on the row will reveal experiment details and will let the user
edit parameters.

Console interaction

[image: _images/console.png]image

The console can be opened by clicking on the bar header at the bottom of the screen
and is collapsed by default (once opened, clicking the bar header will
function as an expand/collapse toggle). The environment is completely
JavaScript scriptable and any action performed via UI interaction can be
reproduced via the JavaScript console commands. Whenever the user
interacts with the UI in the project workspace, the corresponding API
commands will be printed in the console at the bottom of the screen
(collapsed by default). Playing with the UI and looking at the
console is an easy practical way to learn more about the Geppetto
JavaScript API. The console history can be easily exported to text file.

Model visualization

Morphologies: When an experiment is loaded (upon opening a project
the default experiment is loaded), if a 3D representation of the model
morphology is available it will be immediately visualized in the 3D
canvas (the main area of the screen). The user can interact with the 3D
canvas and the scene in it representing the model with intuitive mouse
movements: dragging around with left button for rotation, right button
for panning and mouse wheel for zooming. The camera controls are also
available on the top-left bar, including buttons for rotation, panning
and zooming. Upon loading, Geppetto will make an attempt at centering the
model based on its initial geometries. The control bar also has a “home”
button that will bring the model back to the initial centered position.

Using widgets

Model metadata can be visualized with various
Geppetto widgets. The
tree widget is particularly useful to visualize
Geppetto entity hierarchies.

[image: _images/overview.png]image

In addition, a connectivity widget (shown above)
is particularly well suited to explorations regarding model neuronal
networks.

How to use Geppetto widgets is covered in detail
here.

Lightspeed Search

Geppetto has a search feature that allows the user to search for
anything in the scene / simulation and to interact with it. The search
can be opened with the CTRL+SPACE shortcut or by clicking on the
magnifying glass icon on the left side bar (located right under the
camera controls), while it can be closed by simply press ESC.

[image: _images/spotlight.png]image

To use the search bar after bringing it up, simply type in the text box,
or pick from the default options available under the text box (usually
representing the visible elements in the scene). The box will give
suggestions in the list below as the user types.

[image: _images/spotlight_suggest.png]image

Once an entity has been selected by the user (by clicking on the list
options, or typing and then pressing enter), icons with possible actions
for that entity are shown below the text box (e.g. if it’s a state
variable the user can plot it, if it’s a visual entity the user can
select it or zoom on it etc.). The tooltip on the icons lets the user
know what the icon means.

[image: _images/spotlight_actions.png]image

The lightspeed search is also configurable via its API, for example to
show a list of suggestions to the user that can be mapped to scripted
actions. This will be covered in the developer documentation.

Control Panel

The Geppetto control panel gives a tabular view of all the entities in
the scene, and provides controls to perform actions on them. The control
panel can be opened with the “rows” button under the camera controls on
the left side bar, or via the CTRL+P shortcut. It can be closed with the
ESC key.

[image: _images/controlpanel.png]image

The user can filter results with the text box at the top of the grid
(only the rows with matching text will be shown), and apply sorting by
clicking on the column headers.

The control panel shown in the screenshot above is the Geppetto default,
with info, selection, zoom, and color controls, but it can be completely
customized via the API (covered in the developer documentation).

New experiment

New experiments can only be created if the persistence bundle of
Geppetto is installed in a given deployment (note: this is not the case
on the live.geppetto.org demo).

A new experiment can be created by clicking on the “+” button visible at
the top right of the experiments tab, and a row will be added to the
experiments table. Editable fields can be edited by clicking on them.

Once the experiment is created the user can:

	Edit the experiment name by clicking on it

	Expand experiment details by clicking on the experiment row

	Edit simulation parameters from the experiment details (by clicking
on the fields, same as the name), once the row is expanded. (i.e.
Simulator –> neuronSimulator Time step –> 0.00005s Length
–> 0.3s)

	Add simulation variables to the watch list (*). This will cause
simulation values to be recorded. Without watching any variables
nothing will be recorded, so it is useless to run an experiment
without any watched variables.

(*) At the moment the only way to add variables to the watch list is
via the console, using the Geppetto JavaScript API.

Simulate experiment

Once parameters have been set, the experiment can be run by clicking the
“run” button, the button with cogs in the top-right control bar. This
will cause the experiment simulation to be placed on the Geppetto
scheduler queue. The colored circle on the experiment table will
indicate the experiment status. Statuses are explained in the
“Experiments” section above.

Replay experiment

Once the experiment status goes to green, the experiment can be replayed by
clicking the “play” button on the top right control bar. When the
experiment is replayed, simulation results for the watched variables are
streamed to the client in the form of a Geppetto recording, but this is
entirely transparent to the user. A common way to visualize simulation
results are plot widgets, tree widgets and value widgets, so the user
will typically add the desired widgets to the Geppetto frontend and set
the desired “data sources” before hitting “play”. More on widgets and
how to instantiate them here.

 Widgets

Widgets

Geppetto has a modular architecture that allows to visualize and
interact with the data through different widgets. Widgets are an
essential aspect of the user interface of Geppetto. You can imagine them
as “at-a-glance” views of data and functionality that is accessible
right from the browser. Users can move widgets across the screen, resize
them and interact with their functionality through their API or the
provided UI.

Plot

Popup

Connectivity Widget

Movie player (Docs TBD)

MRI widget (Docs TBD)

Stack Viewer (Docs TBD)

Big Images Viewer (Docs TBD)

Widgets are normally created using the user interface, to create one manually from the console the following API can be used

G.addWidget("PLOT")

or

G.addWidget(0)

For more information see the documentation related to each individual
widget. If you are interested in contributing a new widget to Geppetto
you can follow this tutorial.

 <no title>

 * Variable Visualizer Widget*

The documentation for this widget is currently under development.

 Visual Groups

Visual Groups

Visual Groups allow the users to visualize an entity colouring its
different elements according to a set of properties related to the
entity itself. A visual group can for instance allow the user to see the
different cell regions of a neuron or the distribution of one type of
ion channel.

[image: _images/cellregion.png]image

[image: _images/density.png]image

Getting Started

Visual Groups are defined inside the Visualization Tree of an aspect. To
find and show visual groups in the Geppetto UI, the Geppetto console or
the Tree Visualizer Widget must be used. To show all visual group
elements for an entity from the console, navigate up to the
VisualizationTree for a given aspect of a given entity and run the
getChildren() command on it. Alternatively, entering a “double tab”
after typing up to VisualizationTree will show all elements contained
inside the tree:

Entity.Aspect.VisualizationTree

Once the groups are revealed, the user can navigate to any of them and
use the “show(visible)” command to visualize all visual objects that
belong to this group, where “visible” must be true or false:

Entity.Aspect.VisualizationTree.Group1.show(true);

The above command shows all the visual objects that belong to the group
in object by coloring. The color is specified in the Visual Group
Element node or by parameter.

The command below hides all visual objects that belong to Group 1 if
they are being displayed:

Entity.Aspect.VisualizationTree.Group1.show(false);

Visual group elements can also be visualized individually with the
“show(visible)” command.

Entity.Aspect.VisualizationTree.Group1.Element1.show(true);

Console Commands ———The entire set of commands for visual groups
are:

-- VisualGroup.getType()
 Gets type of visual grup

-- VisualGroup.show(mode)
 Shows the visual group

-- VisualGroup.getChildren()
 Gets all children of this visual group

-- VisualGroup.getVisualGroupElements()

-- VisualGroup.getLowSpectrumColor()

-- VisualGroup.getHighSpectrumColor()

 Geppetto Widgets Tutorial

Geppetto Widgets Tutorial

	Creating a Widget

	Adding Widget to Geppetto

	Using a Widget Inside Geppetto

	Contributing to other widgets

	Allow other widgets to contribute to my widget

Creating a Widget

A template for new widgets is available inside
/org.geppetto.frontend/src/main/webapp/js/widgets/template copy and
paste that folder and name it after the widget you wish to add. In the
template the widget is called WIDGETNAME. Search for WIDGETNAME inside
/org.geppetto.frontend/src/main/webapp/js/widgets/ to easily find the
places that need to be changed to add a new widget.

This tutorial will describe the steps needed start creating your own
Geppetto Widget. To begin, you will want to set up a specific file and
folder structure. Let’s say you are interested in creating a Geppetto
Widget that can plot one or multiple Simulation Variables values in a
chart. For example, let’s call it a “Chart” Widget. The first step would
be to create the folder structure, which consists of a parent folder
named after the Widget and multiple folders inside it for the
controllers and vendor libraries. Your folder structure should look
something like this: :

/chart
 /controllers
 /vendor

The widget will use a combination of JavaScript and CSS files,
consisting of a main class, configuration script, controller class and a
styling CSS file. Below is a brief explanation of the purpose of each of
these files.

Files Needed

Recommended files needed for creating a widget:

File Format Example File Function

[NameofWidget Chart.js Main class of widget: instructions for how the
].js code should behave goes in here.

config.js config.js Configuration class for the widget: use to
specify the libraries for the widget and
export the scripts using requireJS

[NameofWidget Chart.css Use to customize your widget.
].css

[NameofWidget ChartContr Use to bind Geppetto with your widgets: tells
]Controller.j oller.js your widget what to do when Geppetto tells it
s to do it.

External libraries and existing plugins can be used as part of your
widget. Your newly-created widget class should be the one communicating
and using the external libraries’ plugins. For example, if you wanted to
create a widget to chart things in Geppetto, and you know of a
JavaScript library that does charting, you can use that library as a
dependency for your widget and build on top of it rather than having to
write charting from scratch.

Creating the Main Widget Class

A superclass called
Widget.js [https://github.com/openworm/org.geppetto.frontend/blob/development/src/main/webapp/js/widgets/Widget.js#L43]
exists and this contains getters, setters and other global methods for
properties that all widgets have, including name, position, id, size,
and visibility. The widget class you will be creating extends this
superclass.

var Chart = Widget.View.extend({
})

Next you will need to populate the class with methods corresponding to
the functionality of the widget, such as plotting and updating the chart
data. It is within the main widget class that you can use external
libraries and plugins to build the widget. Look at the
Plot.js [https://github.com/openworm/org.geppetto.frontend/blob/development/src/main/webapp/js/widgets/plot/Plot.js#L38]
widget as an example of a widget built on top of an external library.

Creating the Controller Class

The Controller class regulates the handling of events received from
Geppetto and how they interact with your widget. The WidgetsListener
class, located in the “Widgets” folder, will already handle many of the
event types shared among all widgets (e.g., those implemented in
Widget.js superclass) including notifying all widgets about new updates.
However, you should add an update method to your controller class to
handle how updates are sent to the widgets. Other methods that can be
added to the controller class are “addWidget()” and “removeWidget()”,
which control the creation of your widgets. Take a look at the
PlotsController for an example of how to do this.

define(function(require) {
return function(GEPPETTO) {
 //Rest of Controller code
 }
}

Creating the config.js Class

The purpose of having a config.js class inside your widget folder is to
specify the libraries for the widget and be able to export them via this
script. To export the libraries, use requireJS
library [http://requirejs.org/], which allows scripts to load
dynamically. If you want to add the files for the widget you just
created, include the following lines in the config.js file.

var chartModule = [];
chartModule("widgets/chart/vendor/chartsplugin-1.0");
chartModule("widgets/chart/Chart");

Where the array chartModule holds the path of all the JS libraries
needed for the widget, the “.js” extension can be omitted when adding
the scripts to the array, however, the omission is not required. Notice
that the controller class has been omitted for now, we will be adding
that class as an AMD Module which is explained in the next section.

When you have finished populating your chartModule array with your
scripts, add them to Geppetto using requireJS as in the example below.
The function($) will be called once the scripts have been loaded
successfully, at which time you will be able to load the CSS files for
the widget.

require(chartModule, function($) {
 loadCss("js/widgets/chart/Chart.css");
});

Folder Structure

As an example, you have finished creating that widget named “Chart” for
which you used an external library named “chartsplugin-1.0”. The folder
structure of the widget should look like this: :

/chart
 -Chart.js
 -Chart.css
 -config.js
 /controllers
 -ChartController.js
 /vendor
 -chartsplugin-1.0.j

The folder named “chart” holds the main widget file “Chart.js” and the
related CSS file. The “controllers” folder contains the class binding
Geppetto with the widgets. The “vendor” folder contains the external
libraries used to create this widget.

Adding Widget to Geppetto

If you have structured your folder using the recommended structure from
the previous
section [https://docs.google.com/a/metacell.us/document/d/160pXT0CProgY2xs5Y8zdHnVGZuV_X-A6ZWvYWnAIYDQ/edit#heading=h.5ncyvsoawo2],
you can then drop them inside the “widgets” folder located in the
frontend bundle under “src/main/webapp/js”.

Locate the file “src/main/webapp/js/main.js” and import your widget by
adding the location of the script using requireJS. Using our widget
example above, we would add the following line to the config.js file.

require(“widgets/chart/config.js”, function($) {});

Using a Widget Inside Geppetto

If you would like to use your widget from the console within Geppetto,
there are a few additional steps. First, you will need to expand the
“WidgetFactory.js” class inside the frontend bundle to handle adding and
removing your new widget via the console.

To do this, first add the type of your new widget to the global
“Widgets” variable. Simply add the name of your widget followed by the
next number from the sequence of previously added widget types. The
example “CHART,” would look like this:

var Widgets = {
 PLOT : 0,
 CHART : 1
 };

Inside the WidgetFactory.addWidget(widgetType) method, add a case inside
the switch statement that connects it to your controller’s new widget
method. For example:

case Widgets.CHART:
 widget = ChartController.addChartWidget();
 break;

Follow the same logic for WidgetFactory.removeWidget(widgetType):

case Widgets.CHART:
 widget = ChartController.removeChartWidget();
 break;

Doing this will allow you to create new widgets from the console using
the following commands:

G.addWidget(Widgets.CHART);
G.removeWidget(Widgets.CHART);

Selection Event

Selecting and entity or aspect inside Geppetto generates an events, that
all subscribing listeners can detect. In order to detect selection
changes, the update method in your controller must look for the
SELECTION_CHANGED event. Then you can call;

Simulation.getSelection()

which will return an array of the entities that are currently selected.

Contributing to other widgets

Geppetto provides a framework for contributing to other widgets through
specific actions. The widget may register a/some commands provider to a
data type. Any time the user right-click on an object of this data type,
a context menu will display the actions generated by the command
provider. These actions can be generated dynamically depending by the
commands provider depending on the data selected by the user.

To contribute with actions to any widget, firstly we have to register in
“Geppetto.MenuManager“ the data type and the related commands provider.
This needs to be done in the config.js file of the widget. Keep in mind
the commands providers should be in the Widget Controller. The
registration process in the example “CHART” would look like this:

GEPPETTO.MenuManager.registerNewCommandProvider([dataType], GEPPETTO.ChartController.getCommands);

Inside the ChartController.getCommands(node) method add the code you
would like to in order to return a set of menu items. The events
framework will provide as a parameter the data structure of the element
right-clicked. These actions can be static menu items or generated
depending on the data.

The object to be returned is an array, each object in the array is
considered a menu group. Inside each menu we can add as many menu items
as you would like to. Each menu item should have a label and may have an
icon, an action (again bear in mind this action should be located in the
widget controller), a position (this parameters will be used to set the
position of the menu item inside the menu group) and another set of
groups. Obviously, this set of groups should have the same structure as
any menu group and will be displayed as nested group inside the parent
element. The returned object structure should look like this:

var returnedMenuItems = [
 [
 {
 label: "Add to Chart",
 icon: "icon0",
 position: 0,
 groups: [
 [
 {
 label: "Add to New Chart",
 action: GEPPETTO.ChartController.addChart,
 icon: "icon01",
 position: 0
 },
 {
 label: "Add to Chart 1",
 action: GEPPETTO.ChartController.addChart,
 icon: "icon02",
 position: 1
 }
]
]
 },
 {
 label: "Add as new line",
 action: GEPPETTO.ChartController.addNewLine,
 icon: "icon1",
 position: 1
 }
],

 [
 {
 label: "Save to file as a Chart",
 action: GEPPETTO.ChartController.saveChart,
 icon: "icon2"
 }
]
];

The menu layout would look like:

[image: _images/ContextMenuScreenshot.png]image

If the user clicks on any menu item the framework will call back the
corresponding action providing as a parameter the data related to the
element right-clicked. The developer has to implement the logic inside
this method.

Allow other widgets to contribute to my widget

If you would like other widgets to contribute to the context menu of
your widget you need to add some lines of code. First, you have to add a
dictionary (“events”) to your widget. The dictionary key will be the
event name (“contextmenu”) followed by the jquery selector. As the value
you will set the function in charge of managing the event. See example
code below:

events : {
 'contextmenu .title' : 'manageRightClickEvent'
}

Note you can also use this “events” object to define any other kind of
events, as for instance “click” or “submit”, within your widget.
Geppetto event framework is based on “Backbone”. You can find some good
examples about how to use “Backbone” events
here [http://www.codebeerstartups.com/2012/12/12-listening-to-dom-events-in-backbone-js-learning-backbone-js]
or just googling.

‘manageRightClickEvent’ will be called when we right-clicked on any
element which has a “title” class. In this method you will have to add
the code in order to get the node data and pass it together with the
event to the ‘showContextMenu’ method of the “Widget” superclass.

manageRightClickEvent : function(event) {
 [Code for getting the node data. Node that in $(event.target) give you the element which has been right-clicked.]
 this.showContextMenu(event, node);
}

 Source Setup on Windows

Source Setup on Windows

This will tell you how to get the Geppetto source code and build it on a
Windows machine (Windows? I’m on
OSX/Linux! [http://docs.geppetto.org/en/latest/osxlinuxsetup.html]).

Note: if you just want to play with a sample Geppetto deployment you
don’t need to install anything, just visit https://live.geppetto.org.
If you want to install the latest released sample deployment just
download it from
here [https://github.com/openworm/org.geppetto/releases] and run
/bin/startup.bat. The following instructions are if you want to setup
Geppetto from sources.

Psst: If you get stuck at any point, you can join our Slack channel and we
will assist you. Send an email to info@geppetto.org
for an invite or if you just have a quick question.
You can also send us screenshots and log files!

Prerequisite software

You need a bunch of other software to setup Geppetto from sources. The
good news: You probably have some of this on your machine already!

	Java SE Development Kit 8:
Installer [https://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html], you will need to make an oracle.com account in order to download

	Python 2.7: Installer [https://www.python.org/download/]

	setuptools for Python 2.7:
Installer [http://www.lfd.uci.edu/%7Egohlke/pythonlibs/#setuptools]

	pip for Python 2.7:
Installer [http://www.lfd.uci.edu/%7Egohlke/pythonlibs/#pip]

	Maven: ZIP file [http://maven.apache.org/download.cgi], please
follow these
instructions [https://maven.apache.org/install.html] -
particularly, you have to add the bin folder to your PATH environment
variable (What are environment variables? See below)

	git: Installer [http://git-scm.com/download/win], make sure to
select “Use Git from the Windows Command Prompt” during the
installation

	Apache Tomcat 8: All
Downloads [http://tomcat.apache.org/index.html], use the
32-bit/64-bit Windows Service Installer for Tomcat 8.

	Virgo Server for Apache Tomcat: ZIP
file [http://www.eclipse.org/downloads/download.php?file=/virgo/release/VP/3.7.2.RELEASE/virgo-tomcat-server-3.7.2.RELEASE.zip], unpack it to your
desired location

Environment Variables

Environment variables tell your operating system and other programs
where you installed certain software. To modify them, go to the Control
Panel (start menu or search for it), select System, then Advanced
System Settings and click on Environment variables.

Once there, you can specify user variables (only for your account) and
system variables (for everybody). Both will work for us, only JAVA_HOME
should generally be a system variable.

Create variables with the following names and values, or look if they
already exist:

	JAVA_HOME: path to Java SE Development Kit 8

	PYTHON_HOME: path to Python 2.7

	SERVER_HOME: path to Virgo Server for Apache Tomcat

	MVN_HOME: path to Maven

Maven needs to build with Java 8. If you want to point your JAVA_HOME
variable to a different version, create a file mavenrc_pre.bat in
your home directory that contains:

JAVA_HOME=path\to\Java8

Next, you have to modify the PATH variable. This will allow you and
Geppetto to run several programs from the command prompt. You may see
that the PATH variable exists twice: Once as a user variable, once as a
system variable. Use the one where the variables above belong to (and if
it doesn’t exist, create it). Select it and click on edit. Append the
following strings to the value field, separated by semicolons:

	%JAVA_HOME%

	%JAVA_HOME%\bin

	%PYTHON_HOME%

	%PYTHON_HOME%\Scripts

Make sure that there is no semicolon at the end of the path variable.
OK, that was everything you need, let’s get the source code now.

Setup Geppetto Repositories

First, create a directory where you want the Geppetto source code to
live (geppetto-sources from here on). Open up the command prompt
(cmd.exe) and navigate to it by typing:

cd geppetto-sources

Once there, clone the org.geppetto repository from GitHub by entering:

git clone https://github.com/openworm/org.geppetto.git

In Windows Explorer, navigate to
geppetto-sources\org.geppetto\utilities\source_setup. Open the
config.json file in a text editor and change the value of the
sourcesdir field to the path of your source directory (use \\ as
separators).

Go back to your command prompt and enter:

cd org.geppetto\utilities\source_setup

You are now in the source_setup folder, which contains some handy
scripts. First, run the setup.py script:

python setup.py

This will copy all of the required repositories to geppetto-sources.
Make sure that you have writing permissions for it. If a repository is
missing, check that it is entered correctly in config.json.

Building Geppetto

To build Geppetto, navigate your command prompt back to the org.geppetto
directory. You can do this simply by entering twice:

cd ..

Once there, run:

mvn -Dhttps.protocols=TLSv1.2 install

This will build all of the Geppetto modules at once. As you do
development, you probably don’t want to re-build all modules if you only
worked on a few ones. In this case, you can build the modules
individually and then re-deploy. To build an individual module, just run
the install command from its directory. To prevent problems caused by old build
files, you may want to clean before reinstalling by:

mvn -Dhttps.protocols=TLSv1.2 clean install

Deploying Geppetto

To deploy Geppetto to the Virgo server, navigate your command prompt
again to the source_setup directory by typing:

cd utilities\source_setup

Then run:

python update_server.py

This will copy all of the built jars and wars over to
%SERVER_HOME%\repository\usr and the geppetto.plan file in
org.geppetto to %SERVER_HOME%\pickup.

Starting and Stopping Virgo

The Virgo server is started and stopped via batch scripts. Simply go to
%SERVER_HOME%\bin (in Windows Explorer or through the command line)
and run the startup.bat or shutdown.bat file.

For more info on Virgo’s control scripts, see
here [https://www.eclipse.org/virgo/documentation/virgo-documentation-3.7.2.RELEASE/docs/virgo-user-guide/htmlsingle/virgo-user-guide.html].

With that you are basically done! So, fire up the startup.bat file,
wait until its output stops, cross your fingers and point your browser
to:

http://localhost:8080/org.geppetto.frontend

You should now see Geppetto starting up. Good job!

Not quite there yet? Get in touch with us, we are there to help you!
Send an email to info@geppetto.org for an
invitation to our Slack channel or if you just have a quick question.

Using gitall.py

The gitall.py script allows you to perform git commands on all
repositories at once. This makes it easier to maintain the state of the
many repos required by Geppetto.

To use it, navigate your command prompt to the source_setup folder and
type:

python gitall.py branches

to print the current branch of each repo

python gitall.py checkout <branch>

to checkout on each repo. Note the branch must exist on each repo._images/symbol.png

_images/types.png
v 8 types
v B Type -> Node
4 Node
b @ getDefaultValue() : Value
b =rsuperType : Type
» = abstract : Boolean
» =rvisualType : VisualType
> ZtreferencedVariables : Variable
P =+domainModel : DomainModel
» [VisualType -> Type
» H ImportType -> Type
v E CompositeType -> Type
) Type
P Svariables : Variable
p =+ defaultValue : Composite
E PointerType -> Type
E QuantityType -> Type
El ParameterType -> Type
[stateVariableType -> Type
| DynamicsType -> Type
El ArgumentType -> Type
E ExpressionType -> Type
E HTMLType -> Type
H TextType -> Type
E URLType -> Type
E PointType -> Type
E ArrayType -> Type
E CompositeVisualType -> VisualType
[l ConnectionType -> Type

VVVVVVVYVYVYyVYYVYYVYYY

_images/ss6.png
geppetto's home X geppetto X

L] 127.0.0.1:8080/0rg.geppetto.frontend/geppetto?load_project_from_id=9

@ EyeWire Sample

EyeWire (https://eyewire.org) is a game to map the brain
from Sebastian Seung's Lab at MIT. This citizen science
human-based computation game challenges players to
map 3D neurons in a retina. Geppetto is visualizing in 3D a
morphology of a Ganglion cell that was reconstructed using
the game.

>_'.Console A Experiments

_images/superscript.png

_images/usr_btn.png
I’'ma user

_images/values.png
V §# values

H value

| Composite -> Value

[StringToValueMap [java.util.Map$Entry]
H Quantity -> Value

[PhysicalQuantity -> Quantity
E Unit -> Value

E TimeSeries -> Value

E Metadatavalue -> Value

E Text -> MetadataValue

E URL -> MetadataValue

E HTML -> MetadataValue

E Pointer -> Value

[PointerElement

H Point -> value

[l Dynamics -> Value

E FunctionPlot

E Function -> value

[l Argument -> Value

[Expression -> Value

H visualvalue -> Value

H Collada -> VisualValue

[oBJ -> Visualvalue

[Sphere -> VisualValue

E Cylinder -> VisualValue

H Particle -> VisualValue, Point
[SkeletonAnimation -> VisualValue
[SkeletonTransformation

[VisualGroupElement -> Node
[VisualGroup -> Node

[Connection -> Value

“* Connectivity

[ArrayElement -> Value

E ArrayValue -> Value

VVVVV V V VYV VY VY VYV VY Yy VYV VYV Yy VYV Yy VYV YVYyVYVYVYYYVYYY

_images/ss4.png
*geppetto's home x /) *geppetto x

| 127.0.0.1:8080/0rg.geppetto.frontend/geppetto?load_project_from_id=6

[Mc302.ADAL 0.
[Mc302.A0AR 0.....
[Je302.8DUR 0
[Tleso2.11R_0
[Eles02.12L_0..
[Ele302.pvDR_0

_images/ss5.png
* geppetto's home x) * geppetto x

L] 127.0.0.1:8080/0rg.geppetto.frontend/geppetto?load_project_from_id=7

~ Visualization
~ Cell Regions
Soma
Dendrites
~ Channel Densities
~ CaP

_images/ss2.png
*geppetto's home x /) *geppetto x

C' f [127.0.0.1:8080/org.geppetto.frontend/geppetto?load_project_from_id=5

|

%
0.000
-0.025
-0.050

-0.075 baskets_12_11 is connected to pyramidals_48_18

-0.100
0.0000 0.0300 0.0600 0.0900 0.1200 0.1500 0.1801 0.2101 0.2401 0.2701 0.3000

s s s s s s s s s s s

Order by:

By entity name

_images/ss3.png
7< geppetto's home X | < geppetto x

|] 127.0.0.1:8080/0rg.geppetto.frontend/geppetto?load_project_from_id=1

I:‘hhceIIAeIectricaI.m.v

~

I:‘Sodium h.q
I:‘Sodium m.q
I:‘Potassium n.q

nav.xhtml

 Table of Contents

 		
 Contributions

_images/0.jpg

_images/01.jpg

_images/03.jpg
WormSim

_images/ContextMenuScreenshot.png
Add to Chart Add to New Chart
Add as new line Add to Chart 1
Save to file as a Chart

_images/02.jpg

_images/Plot1.png
o)

Tme

Con roter. adoClorfunct oa(GEPPETT.AoceLFactory. st ances. et TAStanc(GEPETTO. Ry gALIPOt ent Lal10StancesEndinghl "), False), indon. vl _color);
e perinent) 1oy

_images/Sf9byfH.png
@ Plot1 Widget

-
.
.
+ geppetto .
1~
" Plot1 widget createdr
var options = {xaxis : {min : @, max : 10}, yaxis : {min : @, m o
Plot1.setOptions(options) Plotl.setName(nam
Plotl.setPosition(left,top) Plotl.setSize(h,w)

Plot1.setOptions(options)

=> undefined
var x = [[1,2], [3,41]

=> undefined
Plot1.plotbata(x)

=> "Line plot added to widget"

> // type a javascript command and hit enter (help() for info)

10

_images/CoreTests.png
FASS Spotiight button exasts
PASS Spotlight opened

Waiting to see if the Plot variables button becomes visible
Waiting to see if the Plot and watch variable buttons becomes visible

PASS Plot vardables icon correctly invisible
PASS Watch button correctly hidden

Variables button are hidden correctly

Clicking to close spotlight

I've waited for EyeMireGanglionCell project to load.
geppetto title is ok

geppetto 1oads the initial simulation controls
geppetto 1oads the initial camera controls
geppetto loads the initial foreground controls
waited for Pharyngeal project to load.
geppetto title is ok

geppetto 1oads the initial simulation controls
geppetto 1oads the initial camera controls
geppetto loads the initial foreground controls
Opening controls panel

The control panel is correctly open.

EEEEE R R

i¢

i

waited for cElegansConnectome project to load.
geppetto title is ok

geppetto 1oads the initial simulation controls
geppetto 1oads the initial camera controls
geppetto loads the initial foreground controls
waited for cEleganshuscleModel project to load.
geppetto title is ok

geppetto 1oads the initial simulation controls
geppetto 1oads the initial camera controls
geppetto loads the initial foreground controls
waited for cElegansPVDR project to load.
geppetto title is ok

geppetto 1oads the initial simulation controls
geppetto 1oads the initial camera controls
geppetto loads the initial foreground controls
Geppetto basic tests

LR R LT

R

The control panel opened with right amount of rows

_images/Plot1-Toolbar.png
=4l & 2D hhcell hhpop(0]v -00 x

_images/connection_colors.png
someihing dofolt slced it optto dofoll inpu and otput
dhoscleded unseleced seloced sleced highlghed sl

_images/cellregion.png
(~]

]
) 50 08 600
B o©

< geppetto

_images/chord.png
&+ 2D Connectivitys Widget -00 x

Populations

e
B

_images/dashboard.png
~ geppetto's home

- Cn ‘D 127.0.0.1:8080/0rg.geppetto.frontend/

“ @ =

“ geppetto

Q

Search project

Guest 1 &

x

c302 network of
integrate and fire
neurons

x

Ganglion Cell from
EyeWire

x

Primary Auditory
Cortex Network

*

Purkinje Cell
morphology

Hodgkin-Huxley OpenWorm C.elegans

Neuron

muscle model

C.elegans PVDR
Neuron morphology

Hodgkin-Huxley Neuron (I —2

A Experiments

@® Hodgkin-Huxley NEURON simulation [—

Created on Thu Jan 01 1970 00:00:00 GMT+0000 (BST)
Last modified Sun Jul 05 2015 14:21:57 GMT+0100 (BST)

Description The Hodgkin-Huxley model (or conductance-
based model) is a mathematical model that
describes how action potentials in neurons are
initiated and propagated. It is a set of nonlinear
differential equations that approximates the
electrical characteristics of excitable cells such
as neurons.

Model parameters

Watched Variables

hhcell.electrical.SimulationTree.hhpop|[0].v

hhcell.electrical.SimulationTree.hhpop|0].bioPhys 1.membraneProperti...
hhcell.electrical.SimulationTree.hhpop|0].bioPhys 1.membraneProperti...
hhcell.electrical.SimulationTree.hhpop|0].bioPhys 1.membraneProperti...

Aspects
hhcell.electrical

Simulator neuronSimulator

Conversion service lemsConversion

_images/default.png
o000 % geppetto Giovanni

C' 1 & Secure | https:/live.geppetto.org/geppetto?load_project_from_id=16 w

Caenorhabditis elegans is a free-living (not parasitic),
transparent nematode (roundworm), about 1 mm in length,
that lives in temperate soil environments. This network
model of its nervous system was generated using ,an
experimental framework from the project for
generating network models in NeuroML 2 based on C.
elegans connectivity data.

_images/console.png
Popupl.setPosition(870, 90);

=> "Description Widget's position has been updated"
Popupl.setSize(160,465)

=> "Description Widget has been resized"
G.addBrightnessFunction(hhcell.electrical, hhcell.electrical.SimulationTree.hhpop[@].v, function(x){return (x+0.07)/0.1;});
=> undefined
Project.getActiveExperiment().play({step:1});

=> "Play Experiment"
Project.getActiveExperiment().pause()

=> "Pause Experiment"

G.showConsole(true)

=> "Showing Console"

> // type a javascript command and hit enter (help() for info)
(a4 Contact us!

_images/controlpanel.png
Filter Results

Naino) Typels) Controls.
acnet2 network_ACnet2 0 ®s Q
acnet2.pyramidals_48 pyramidals_48 0 ® b6 @
acnet2.pyramidals_48[0] pyr_4_sym 0 @ 6 Q
acnet2.pyramidals_48[1] Ppyr_4_sym 0 8 @
acnet2.pyramidals_48[2] pyr_4_sym 0 @ 6 @
acnet2.pyramidals_48[3] pyr_4_sym 0 ® 6 Q
‘acnet2.pyramidals_48[4] Pyr_4_sym 0 @ 6 Q
acnet2.pyramidals_48[5] pyr_4_sym 0 @ 6 @
acnet2.pyramidals_48[6] pyr_4_sym 0 @ 6 Q
acnet2.pyramidals_48[7] pyr_4_sym 0 @6 @

_images/dev_btn.png
I'ma (dev

_images/download_model.gif
_—

Time (s)

Hodgkin-Huxley NEURON simulation

hhcell

Jul 5, 2015 1:21:57 PM

neuronSimulator

0.00005

[X]

_images/density.png
(~]
2

(]
(el o o} Egﬂ (<[>]
Q

“ geppetto _ Gonsole

G- showconsole(tr

sualizationTree.Channelbensities. Leak. shou(true) '

enter (help() for info)

_images/designdocs.png
Overview

] Components

- geppetto
- commoncomponems

_images/dropbox.png
Geppetto would like access to its own folder,
Apps > Geppetto, inside your Dropbox.

_images/experimentDashboard.png
@® Hodgkin-Huxley NEURON simulation (4 —

Created on Thu Jan 01 1970 00:00:00 GMT+0000 (BST)
Last modified Sun Jul 05 2015 14:21:57 GMT+0100 (BST)
Description The Hodgkin-Huxley model (or conductance-

based model) is a mathematical model that
describes how action potentials in neurons are
initiated and propagated. It is a set of nonlinear
differential equations that approximates the
electrical characteristics of excitable cells such
as neurons.

Model parameters

Watched Variables

hhcell.electrical.SimulationTree.hhpop|[0].v

hhcell.electrical. SimulationTree.hhpop([0].bioPhys1.membraneProperti...
hhcell.electrical. SimulationTree.hhpop([0].bioPhys1.membraneProperti...
hhcell.electrical. SimulationTree.hhpop([0].bioPhys1.membraneProperti...

Aspects

hhcell.electrical

Simulator neuronSimulator
Conversion service lemsConversion
(optional)

Timestep 0.00005s

Length 0.3s

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

_images/hive.png
£ 2D Connectivity2 Widget =00 x

_images/hm1.png
[XN] O HM Giovanni

< C 1 @ 54.183.154.48/dataPortal/MRIExSitu X ¢ 5

PATIENTHM.org THE STORY HISTOLOGICAL ATLAS THE BRAIN OBSERVATORY
~-
2 AeS
; P a7
MRIIN SITU ' ' c VIRTUAL SLICES 3D MODELS
M X .
San Diego, APRIL 25-26, 2009 3-D TI-WEIGHTED FSPGR

15T General Electric (GE) Signa Excite. 8-
channel, transmit-receive head coil

Plane: sagittal; aquisition matrix:
3-D TI-WEIGHTED FSPGR +#* 256x160; 172 slices; slice thickness:
Tmm; TR:10.8; TE:4.8. INEX.

3-DFASTSPINECHO +#*

2-D FAST SPIN ECHO +*

HIGH RES 3-D TI-WEIGHTED FSPGR +#*

Home The Story The Brain Data Portal Histological Atlas The Brain Observatory

© 2015-2017 The Brain Observatory®

_images/force2.png
-00 x

£ 2D Connectivitys.

Cell Types

_images/header.png
< geppetto | docs

_images/matrix1.png

_images/matrix2.png

_images/hm2.png
o O Upload files - openworm/c HM Patient H.M. Giovanni

&

C v @ 54.183.154.48/dataPortal/virtualSlices

PATIENTHM.org THE STORY 414 PORTAL HISTOLOGICAL ATLAS THE BRAIN OBSERVATORY

MRIIN SITU AUTOPSY MRI EX SITU BLOCKFACE VIRTUAL SLICES 3D MODELS

— Digitized histological slices

Section 0379; Nissl stain o

Section 0559; Nissl stain g

Section 0597; myelin stain g

Section 1045; Nissl stain ”*

Section 1065; myelin stain -

Section 1101; myelin stain ”*

Section 1209; myelin stain o

Section 1212; Bielschowsky stain g

Section 1243; Nissl stain -

Section 1353; myelin stain g

Home The Story The Brain Data Portal Histological Atlas The Brain Observatory

© 2015-2017 The Brain Observatory®

_images/load_project_workflow.png
Geppetto client

-

Geppetto Server

load_project_from_url

—_—|

project_loaded

geppetto_model_loaded

Create runtime project

Import type

_images/membrane_spiking.png
v

o Wi e eab <a>€8
Q

>_ Console

?29 Hodgkin-Huxley Spiking Neuron

x

W] hhcell.hhpop[0].v
0.025
s
< 0.000
€
5]
g -0.025
2]
=
§ -0.050
w
-0.075
Time (s)
? "D Gating Variables
1.00 I:‘ Sodium h.q
. [sodiumm.q ~
I:‘ Potassium n.q
0.75
0.50
0.25
Time (s)

A Experiments

* @ @ Results » Play m H Stop

L4 Plot all recorded variables
14 Play step by step
14 Play step by step (100x)

[/ Show simulation time

? "D Simulation time

time

0.0517s

O Help

_images/vfb.png
O @ VFB - Virtual Fly Brain, a Giovanni

& C 1 @ https://v2a.virtualflybrain.org/?id=VFB_00005272&i=VFB_00017894,VFB_00005264,VFB_00005267,VFB_00005272 X ¢

Virtual Fly Brain

Cha-F-300184 (VFB_00005272)

[)::}& -

).

expresses
overlaps

overlaps
part of
overlaps

nart nf

_images/variables.png
V §# variables
» [Variable -> Node
» H TypeToValueMap [java.util. Map$Entry]

_static/ajax-loader.gif

_images/workspace.png
geppetto's home x /) geppetto x

|] 127.0.0.1:8080/0rg.geppetto.frontend/geppetto?load_project_from_id=1

HStop O Help

>_ Console A Experiments

Popupl.setPosition(870, 90);
“Description Widget's position has been updated"
Popupl.setSize(160,465)
“Description Widget has been resized"
G.addBrightnessFunction(hhcell.electrical, hhcell.electrical.SimulationTree.hhpop[@].v, function(x){return (x+0.07)/0.1;});

Project.getActiveExperiment().play({step:1});
"Play Experiment"
Project.getActiveExperiment().pause()
"Pause Experiment"
G.showConsole(true)
“Showing Console"

> // type a javascript command and hit enter (help() for info)
(a4 Contact us!

_images/force1.png
-00 x

£ 2D Connectivity2 Widget

Cell Types
W coo00

" Granue 58

e

_images/osb.png
o @ Primary Auditory Cortex n

< c o

Giovanni

® www.opensourcebrain.org/projects/acnet2/models?explorer=https %3A%2F % 2Fraw.githubusercontent.com%2FOpenSourceBrain%... ¢

€2 OPEN SOURCE BRAIN [searcnpoecrs | a] Bxploe 0S8 Sgnin Signup

Primary Auditory Cortex network < Return to project

i\) ot & Result 2 |Run » Pla
SeConnectivity A Model Description PR e y

? D Simulation time
AE@L?D "o x time
network_ACnet2.pyramidals_48[0].soma_Ov = “

0.3000s
0.02 network_ACnet2.pyramidals_48[0].soma|

=)

Q
(]
)
Q
Q

Membrane potential (V)
) S
K 8

1

o
Q
=)

(=]

Bio

AExperiments

Name Date

MediumNet - net Jan 18, 1970 7:28:28 AM

_images/overview.png
* ® Connectivityl Widget X @ Connectivity2 Widget x delp

Populations

[ooryms

. SUPAXAX

[supBasiet

. SupLTSInter

I 2oryrre et

2 D
v

Y
. Exc_Pyr_int
[o pyr
| phBask Py
P r_Besk s
[nBask TS
| [N
B s rs

W rmsats

<

D BB [e3d

Order by:

By entity name

® Connectivity3 Widget X @ Connectivity4 Widget x

Cell Types

[oaryms

. SUPAXAX

B suosasiet

. SupLTSinter
. L23PyrFRB_varlr
Synapse Types
[nnits rs
W ecrry
[Bo Pyt
| nhsopyr
I nn_Besk Py
[rhuTsaTs
B sesk TS
T rrits pyr
B ek s

s

il

i >

7 N 4

>_ Console A Experiments

_images/mucT88s.png
|2 Markers " Properties % Servers 5% ¥ Data Sou

v-,%ceppetto [Stopped, Synchronized]
4% org.geppetto.core [Synchronized]
[".org.geppeno.fron(end [Synchronized]
4% org.geppetto.model.sph [Synchronized]
Qorg.geppeno.simulation [Synchronized]
@.org.geppetto.simulamr.sph [Synchronized]
Q}org.geppeno.solver.sph [Synchronized]

_images/netpyne.png
- 0 X

Raster Plo

Raster plot Spiking Stats

H

Population
F]
g

0 30 a0
Rate (Hz)

a0 600
Time (ms)

L5 electrode

Voltage traces

cell 91, Pop PTSE
— Cell 92, Pop PTSB.

a0 60
Time (ms)

&0 80
time (ms)

>_ Console

_images/popup.png
@ Description

The Hodgkin-Huxley model (or conductance-based model) is a
mathematical model that describes how action potentials in neurons
are initiated and propagated. It is a set of nonlinear differential

equations that approximates the electrical characteristics of excitable
cells such as neurons.

_images/popup2.png
@ Popup2 Widget

Model Summary

Description: Network

NeuroML Source File

Populations

Population Population - hhpop: 0 Cell - hhcell

Cells

Cell - hhcell

Channels

lon Channel lon Channel lon Channel
Inputs

Pulse Generator - pulseGen1

_images/parameter.png

_images/playback_experiment.gif
& Expormnts

® Nowspemer2

o005

03

_images/menubutton.png
* @& @ Results Ml Pause

OOww ==

Plot all recorded variables
Play step by step

Play step by step (10x)

Play step by step (100x)

Apply voltage colouring to morphologies
‘Show simation time

_images/model.png
V §# model
> E GeppettoModel
[l Node
[l GeppettoLibrary -> Node
E LibraryManager
| ExperimentState
[Variablevalue
El Tag
[l DomainModel
El ModelFormat
[l ExternalDomainModel -> DomainModel
“* FileFormat
P f# types
> f# values
P §# variables

VVVVVVVYYVYYY

_images/sphere.png
o BB EaB [KEE ¥
a <

SN [yS—— R T

_images/spotlight.png

_images/run_experiment.gif
Z Expormants

Newpemert2

A18,201682003 A1
rarrSmUs
245,215 12157

03

_images/search-icon.png

_images/ss1.png
~ geppetto X

C' f [127.0.0.1:8080/0org.geppetto.frontend/geppetto?load_project_from_url=SERVER_ROOT/appdata/vfb/brain/braindTdc.json

_images/spotlight_actions.png
hhcell

Explore type @ Visible Zoom
Unselected

_images/spotlight_suggest.png
hheell

hheell.hhpop

_static/up.png

_static/up-pressed.png

_static/images/bckg2.png
milat
“made 1y
m01atonss ¢t

_images/record_variable.gif
2>

2 Hodgin-Huxiey Spking Neuron

<

Electric potential (V)

aQ
"
o
a
a

2 Gatng Variabes

A Experiments

(] rreel nnpoploly
Time (5)
[H] Sedumha
W